The comparison of effects of iron supplementation since pre-pregnant and during pregnant period on reducing iron deficiency anemia in pregnant women with mild anemia in Bali

Luh Seri Ani*, I Made Bakta1, Made Ayu Hitapretiwi Suryadhi1, Nyoman Agus Bagiada1

ABSTRACT

Introduction: Iron deficiency anemia (IDA) is still a problem of pregnant women’s health related to its high prevalence and its negative effects on health. Prevention efforts have been carried out through administration of oral iron tablets to women during their pregnancy; however, the expected results have not been satisfied yet. This failure is probably due to the assumption that, especially in developing countries, the iron store in pre-pregnant women is very low or may be empty, so that iron supplementation during pregnancy is not enough to prevent IDA. The aim of study is to know the difference of effect of iron supplementation in treated and control groups in terms of hemoglobin concentration, serum ferritin level and prevalence of IDA.

Method: A quasi-experimental study was conducted on 99 non-pregnant new couple women. Iron tablets were administered to the treated group from the beginning of pre-pregnant period, continuing until the first 3 months of pregnancy, while in the control group iron tablets were only given during the first 3 months of pregnancy. IDA was measured by serum ferritin and hemoglobin concentration using WHO’s criteria, the benefit of iron tablet was measured by BCR technique.

Result: The administration of an oral iron tablet from the prepregnant period (treated group) could decrease prevalence of IDA higher than the administration of oral iron tablet during pregnancy only (control group) (0% vs 38.46%, p<0.05). A significant difference was also observed on mean serum ferritin concentration at the end of observation (the third month of pregnancy) 33.45±14.12 µg/dL in the treated group, and 19.65±8.99 µg/dL in the control group. This difference was statistically significant (p<0.05). Meanwhile, the hemoglobin concentration was 12.25±1.20 g/dL in the treated group and 10.91±0.67 g/dL in the control group. This difference was also statistically significant (p<0.05). Benefit analysis showed that administration of an oral iron tablet starting from pre-pregnancy is more advantageous (BCR >1) compared to oral administration of iron tablets during the pregnancy period only. There were no significant differences in side effects and compliance of the patient to consume iron pills in both treated and control groups.

Conclusion: The administration of oral iron tablets (iron supplementation) to pregnant women starting from pre-pregnant period results in a better effect compared to oral iron supplementation during pregnancy only. This program is feasible to be implemented in a community setting because its compliance is good.

Keywords: iron deficiency anemia, iron supplementation, pregnant woman.

INTRODUCTION

Iron deficiency anemia (IDA) is still an important health problem, especially to pregnant women, related to its high prevalence and its negative effects. Many countries including Indonesia, reported high prevalence of IDA in pregnant women, nonetheless within a wide range. The prevalence in developed countries is reported to be 46.2%.1,2 The high prevalence of IDA in pregnant women, leads to negative impacts on health as well as on economic aspects. Many studies have reported that IDA in pregnant women give negative effects since pregnancy, after birth, children, and until adulthood. One of the earliest effects of IDA is premature labor. This condition will be associated with new problems for the baby such as low birth weight, immune-deficiency status, and tend to have physiological and growth-development disturbances3. If these conditions are correlated with low IQ, and decrease ability of learning. All these effects lead to impairment of quality of human beings, work productivity and economic implication. Economically, the effect of IDA in pregnant women can be estimated with benefit-cost ratio (BCR) analysis.

1 Doctrate Program in Medicine, School for Postgraduate Study, Universitas Udayana;
2 Corresponding author: Luh Seri Ani; Doctorate Program in Medicine, School for Postgraduate Study, Universitas Udayana; luhseriani@yahoo.com

Received: 2023-01-26
Accepted: 2023-04-24
Published: 2023-05-11
To cope with the IDA problem in pregnant women an “iron pill program” was held by the government of Indonesia. In this program every pregnant woman will be given 90 iron pills from the beginning of pregnant period. The result of this program was not satisfying yet. The prevalence of IDA is still high and the effect of IDA on pregnant women continued: such as 10.2% abortion, 4.3% prematurity and 7.8% fetal growth retardation. The research was held at the district of Abiansemal, Badung Regency in May 2006. The aim of this study is to know the difference of effect of iron supplementation in treated and control groups in terms of hemoglobin concentration, serum ferritin level and prevalence of IDA.

MATERIALS AND METHOD

This research was held at the district of Abiansemal, Badung Regency in May 2006 - January 2007. The research design was quasi experimental with randomized pre and post test control group design (field trial). The population were marriage women planning for pregnancy. The persons included in this study were married women with mild IDA. Samples are 99 married women and not pregnant yet, consisting of 52 control group and 47 treated groups. The two groups were checked for serum ferritin and hemoglobin concentration three times: at the beginning of observation (pre-pregnancy), at the beginning of pregnancy and at the third month of pregnancy (end of observation). On treated group iron tablets (66 mg ferrous sulfate) were given orally from the pre-pregnant period until the first 3 months of pregnancy, meanwhile on control group, oral iron tablets were given from the beginning of pregnancy until the first 3 months of pregnancy.

RESULTS

The characteristics of patients in the treated and control group were similar in regard to age, education and occupation. The mean age is 24.47±4.03 years among the treated group and 25.71±3.81 years among the control group. Educational status of samples consist of elementary school, junior high school, senior high school and undergraduate degree. The most frequent education status were senior high school 25 (53.19%) in the treated group and 23 (44.23%) in the control group. There were various occupations among samples, such as farmer, merchant, labor, private workers and state employees. The highest percentage of occupation was labor, 53.19% in the treated group and 44.23% in the control group. All the differences were not statistically significant (p > 0.05). Iron supplementation from the pre-pregnant period (treated group) could prevent IDA more than iron supplementation from the beginning of pregnancy (control group) (Figure 1). There were no IDA cases in the treated group (0% prevalence), while in the control group the prevalence of IDA was 38.46% at the end of observation. This difference was statistically significant (p<0.05).

Differences were also seen on mean serum ferritin and hemoglobin concentration. The mean serum ferritin of treated group on the beginning of observation (pre-pregnant period), on the beginning of pregnant period and on the third month of pregnancy were 14.95±4.21 µg/dL, 25.68±9.0 µg/dL and 33.45±14.12 µg/dL respectively in treated group; while in control group were 13.94±4.18 µg/dL, 13.32±4.25 µg/dL and 19.65±8.99µg/dL respectively. The mean hemoglobin concentration in treated group were 10.26±0.66 g/dL, 11.52±1.05 g/dL, and 12.25±1.20 g/dL; while in control group were 10.19±0.63 g/dL, 10.23±0.55 g/dL, and 10.91±0.67 g/dL respectively. Differences of the mean of serum ferritin and the hemoglobin concentration in treated and control groups were statistically significance (p <0.05) (Table 1).

Side effects of iron tablets found were nausea, stomach discomfort, and
constipation, but these side effects were very mild, both in the treated and control group. The difference of side effects between treated and control group was not statistically significant. The compliance of patients to follow this program is very good. Good compliance to consume iron pills was found in 44 among 47 subjects in the treated group, and 50 among 52 subjects of the control group. This difference was not statistically significant.

The spending cost for administration of iron tablets started in the pre-pregnant period was Rp. 7,560,- (treated group), while the spending cost of iron tablets started in the pre-pregnant period was Rp. 7,560,- (treated group). This difference was not statistically significant.

Table 3. The Cost- Benefit Ratio of administration of iron tablets in treated and control groups.

<table>
<thead>
<tr>
<th>Risk</th>
<th>BCR Treated group</th>
<th>BCR Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Birth Weight</td>
<td>7.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Prematurity</td>
<td>14.6</td>
<td>9.3</td>
</tr>
<tr>
<td>Abortion</td>
<td>16.3</td>
<td>10.2</td>
</tr>
</tbody>
</table>

As shown on table 3, the BCR of low birth weight, prematurity, and abortion were all more than 1. These mean that the administration of iron pills since prepregnant period, economically gives better impact compared with administration of iron pills just after the beginning of pregnancy.

DISCUSSION

Iron deficiency anemia (IDA) is still a major public health problem in developing countries, including Indonesia. The pregnant women and children under five are the most vulnerable groups. The major determinant of this problem is a low bioavailability of iron on daily diet and high requirement of iron in pregnant women and children during growth. WHO proposed a standard control program for IDA in pregnant women, “iron pills program”. Every pregnant woman will be given 90 iron pills (66 mg ferrous sulfate, combined with folic acid). Indonesia adopted this WHO's program. The result of this program is not satisfactory. There is no significant decrease of IDA in pregnant women, including in Indonesia. No exact explanation to justify this gap. It is assumed that, in developing countries, iron stores of pregnant women are very low, or may be empty, so the “iron pills program” is not enough to restore the iron store during the pregnancy period. Iron supplementation from pre-pregnant period is needed to restore the iron store and to fulfill the increase of iron requirement during pregnancy.

The results of this study support this assumption. Iron supplementation from the pre-pregnant period could increase serum ferritin and hemoglobin levels, and prevent IDA in pregnant women with mild IDA. Iron stores can increase to 33 µg/dL, more than the cut off point (20 µg/dL), while in the control group the iron store is only 19.65 µg/dL, still below the cut off point.
The positive impact of this program is proved from benefit-risk ratio analysis. There is more than one BCR, so it can be concluded that this program is very useful. This program is very feasible because the side effect of iron supplementation is low and the compliance of the patient is high. More field studies in different demographic and geographical contexts are needed to confirm the result of this study, before it can be transformed into a formal program.

CONCLUSION

Administration of iron tablets from the pre-pregnant period in pregnant women gives better results compared with administration of iron tablets started just at the beginning of pregnancy. It is supported by the findings on mean serum ferritin and hemoglobin level; both were higher in the treated group compared with the control group. This program is also more effective in preventing IDA in pregnant women, with a good feasibility in its implementation in the community.

ACKNOWLEDGEMENT

I would like to express my great gratitude to Prof. Dr. dr. I Made Bakta, SpPD (KHOM), Prof. dr. I.N.T. Suryadhi, MPH, PhD and Prof. dr. I.N. Agus Bagiada SpBiok who has patiently given me advice and suggestions for the completion of my study. My sincere thanks also goes to everyone who has made this study possible.

REFERENCES