INTRODUCTION
Mosquitoes are vectors of diseases such as malaria, filarial, and dengue fever that pose a risk to humans. The mosquito repellent is one solution to eradicate mosquito spread. Mosquito repellent on the market mostly contains active substances from the pyrethroid group such as allethrin and dimefluthrin, which are available in the form of fuel, spray, and electricity. Aerosols and the fumes of insect repellent can pollute the air and interfere with the respiratory system and human body organ functions. Smoke from mosquito repellent promotes free radicals that can affect the profile of leukocytes in the blood and cause lung damage. Mosquito repellent smoke enters the body by inhalation through the nose and then enters the respiratory tract, which will carry the inhaled active substance into the lungs and into the bloodstream.

Free radicals could be a trigger of oxidative stress, which has an impact on damage to several organs, tissues, and cells in the liver and kidneys. A previous study conducted by Armalina et al. (2020) reported that insect repellent exposure containing allethrin-type pyrethroid compounds for 12–24 hours over 18 days obtained microscopic results of the liver with hydropic degeneration and necrosis in the portal area, and microscopic examination of the kidneys obtained microscopic results of necrosis and hydropic degeneration.

The pyrethroid compound, dimefluthrin, also has a good ability to control mosquitoes but is likely to have a high toxic effect on the body if used continuously for a long time. This study focused on analyzing the effect of exposure to insect repellent on histopathological features of the liver and kidneys with various concentrations of the active substance of the pyrethroid group, particularly dimefluthrin.

MATERIALS AND METHODS
Study design and materials
This study is an in vivo experimental study. The study used 24 male Wistar rats weighing approximately 200 grams. These rats were divided into 4 groups, including 6 rats as a control group without exposure, 6 rats as a group exposed to electric mosquito coils containing dimefluthrin 0.566%, 6 rats as a group exposed to electric mosquito coils containing dimefluthrin 0.014%, and 6 rats as a group exposed to Mat electric repellent exposure in the liver and kidney. Higher concentrations of dimefluthrin in insect repellent have a significant effect on the histopathology of the liver and kidney.

Conclusions: The use of mosquito coils, electric mats, and liquid electricity for 8 hours over 20 days affects the histopathological evaluation of the liver and kidneys. The higher the concentration of dimefluthrin in insect repellent, the higher the level of damage.

Histopathological findings of the liver and kidneys of wistar rat exposed to insect repellent

Key words: insect repellent, kidney, liver, pyrethroid, white rat.

Received: 2023-03-04
Accepted: 2023-04-02
Published: 2023-04-26
Scientific microtome, slides, cover slips, label paper, and an Olympus CX-22 microscope to observe necrotic and degenerating cells. The solutions needed for tissue processing are alcohol, xylene, paraffin, and hematoxylin-eosin (HE) for staining.

The liver and kidneys of rats were taken on day 20 and then preserved in 10% formalin for fixation. The histopathological procedure of the liver and kidneys briefly included tissue processing, sectioning with a microtome, HE staining, and observation under a microscope with 1000x magnification.

Data analysis
Histopathological observation data of the liver and kidney were analyzed using the Kruskal-Wallis test because the data were non-parametric. The result is considered significant if p<0.05. Histopathological findings in the kidneys and liver were identified by observing the necrotic and degenerating cells based on the interpretation data scores in Table 1.

RESULTS
The following is the damage that occurs due to exposure to insect repellent for 8 hours per day for 20 days, based on histopathological observations of liver and kidney tissue. Statistical tests using the Kruskal-Wallis test can be seen in Table 2 and 3.

Based on the statistical difference test, the results are obtained p-value <0.05, which means that there was an effect of the type of insect repellent exposure on the histopathological findings of the liver and kidneys. Furthermore, the histopathological results of the liver and kidneys showed that exposure to electric mosquito pad, coils and liquid electric for 8 hours per day in 20 days were not safe to use every day because of the effect on cell degeneration and necrosis. In the negative control group without exposure to insect repellent, the liver and kidneys showed normal cell results without any damage (Figure 1-4).

DISCUSSION
The spread of mosquito repellent currently only manifests the ability to kill and repel mosquitoes without the risk of harming humans due to the long-term use of active toxic substances. The active substance in insect repellent is very dangerous if used over the long term. One of the active ingredients in insect repellent is dimethfluthrin.

The active substance of dimethfluthrin in insect repellent has the characteristic of being able to knock down mosquitoes very quickly. Dimethfluthrin, when inhaled and entering the body, causes a highly reactive compound that can cause exogenous reactive oxygen species (ROS) from environmental pollutants. These particles will become free radicals, which will inhibit deoxyribonucleic acid (DNA) production and damage lipid membranes. When free radicals in the body increase, antioxidants will decrease and increase the amount of oxidative stress. Oxidative stress will cause cell and tissue damage in the liver and kidneys.

Table 1. Scores of histopathological findings in tissue.

<table>
<thead>
<tr>
<th>Score</th>
<th>Damage</th>
<th>Percentage of Damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Necrosis or cell degeneration reach ¼ of total observed</td>
<td>25%</td>
</tr>
<tr>
<td>2</td>
<td>Necrosis or cell degeneration reach ½ of total observed</td>
<td>50%</td>
</tr>
<tr>
<td>3</td>
<td>Necrosis or cell degeneration reach ¾ of total observed</td>
<td>75%</td>
</tr>
<tr>
<td>4</td>
<td>Complete necrosis or cell degeneration</td>
<td>100%</td>
</tr>
</tbody>
</table>

N = number of rats; Significant p-value (p<0.05)

Table 2. The difference of kidney cells damage in each group by using the Kruskal-Wallis test.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Cells Damage</th>
<th>Percentage of Liver Cell Damage</th>
<th>Cells Degeneration (p-value)</th>
<th>Cells Necrotic (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6</td>
<td>0.0 Degeneration</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mat Electric</td>
<td>6</td>
<td>3.0 Degeneration</td>
<td>Degeneration 75% and necrotic 37.5%</td>
<td>0.002</td>
<td>0.019</td>
</tr>
<tr>
<td>Coils</td>
<td>6</td>
<td>0.2 Degeneration</td>
<td>Degeneration 5% and necrotic 25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid electric</td>
<td>6</td>
<td>2.0 Degeneration</td>
<td>Degeneration 50% and necrotic 25%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = number of rats; Significant p-value (p<0.05)

Table 3. The difference of liver cells damage in each group by using the Kruskal-Wallis test.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Cells Damage</th>
<th>Percentage of Liver Cell Damage</th>
<th>Cells Degeneration (p-value)</th>
<th>Cells Necrotic (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6</td>
<td>0.0 Degeneration</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mat Electric</td>
<td>6</td>
<td>3.0 Degeneration</td>
<td>Degeneration 75% and necrotic 20%</td>
<td>0.000</td>
<td>0.030</td>
</tr>
<tr>
<td>Coils</td>
<td>6</td>
<td>2.8 Degeneration</td>
<td>Degeneration 70% and necrotic 15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid electric</td>
<td>6</td>
<td>2.3 Degeneration</td>
<td>Degeneration 57.5% and necrotic 20%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = number of rats; Significant p-value (p<0.05)
The liver is an excretory organ that can be used to detoxify toxic substances in the body. When the liver has enough toxic substances for a long period of time, hepatocyte cells undergo changes such as fat degeneration and necrosis.12 Meanwhile, kidneys are organs that are susceptible to the influence of chemicals, because the kidneys can receive 25-30% of blood circulation to be cleaned so that these organs can be filtered so that pathological changes are very high.13

Cell degeneration and necrosis in the liver and kidney organs could be signs of an unhealthy organ condition. This degeneration occurs due to an increase in free radicals, and if this degeneration damage cannot occur, then necrosis damage occurs. Necrosis is irreversible damage that can cause death or cannot return to its normal form.14 This degenerative damage has the characteristics of cell swelling, the presence of empty spaces (vacuoles), and enlarged and compressed cells.15 This necrotic cell damage has characteristics with the nucleus being wrinkled, no longer vascular, the nucleus does not look denser, tears occur (karioresis), and the nucleus becomes pale or not real.16

This research showed that the higher the concentration of the active substance in the mosquito repellent, the higher the damage to degeneration and necrosis that occurs in the liver and kidneys. Statistical analysis explained that there was exposure to insect repellent based on the histopathological findings in the liver and kidneys of rats. This study found necrosis and cell degeneration on exposure to insect repellent rods, liquid electricity, and electric rods in the liver and kidneys. In the kidneys and liver, the highest damage occurred with exposure to electric mosquito coils. The active substance, dimefluthrin, increased liver and kidney tissue damage, especially necrosis and degeneration of liver and kidney tissue. A previous study with a different active substance reported that the kidney and liver in rats were considerably microscopically damaged by allethrin inhalation doses administered 12 and 24 hours apart (p<0.05). During the kidney examination, necrosis, hydropic degeneration, lymphocyte, and erythrocyte infiltration were discovered. The liver showed necrosis in portal areas, hydropic degeneration of lobules, infiltration of inflammatory cells, and fibrosis in the portal area.6 The limitation of this study is that it cannot explain the effect of dimefluthrin in insect repellents with different durations of exposure, so further research is needed to obtain more comprehensive research results.
CONCLUSION

The use of mosquito coils, electric mats and liquid electricity for 8 hours in 20 days affects the histopathological evaluation of the liver and kidneys. The higher concentration of dimefluthrin in insect repellent, the higher the level of damage, and vice versa, if the lower the concentration of dimefluthrin in the insect repellent, the less damage will occur to the liver and kidneys. In future studies, the duration of exposure to mosquito coils containing dimefluthrin can be varied as extended to determine the specific effect of the dimefluthrin content.

ACKNOWLEDGMENT

Thank to Lembaga Penelitian dan Pengabdian Masyarakat, Universitas Nahdlatul Ulama Surabaya to support the study through research grants No. 161.3/UNUSA/Adm-LPPM/III/2021.

FUNDING

Research grants from Lembaga Penelitian dan Pengabdian Masyarakat, Universitas Nahdlatul Ulama Surabaya

ETHICAL APPROVAL

This research has approved the ethical clearance through No.062/EC/KEPK/UNUSA/2021.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

When conducting research and creating publications, each Author makes an equal contribution.