ORIGINAL ARTICLE

1,4-bis-3,4,5-trimethoxy-phenyl-tetrahydro-furo(3,4-c) furan from mahogany (swietenia macrophylla king) seed significantly reduces glucose and malondialdehyde levels in diabetic wistar rats

Muthmainah Muthmainah , Kristanto Yuli Yarso, Bambang Purwanto, Ambar Mudigdo, Mustofa Mustofa

Muthmainah Muthmainah
Doctoral Program in Medicine, Universitas Sebelas Maret, Surakarta, Indonesia. Email: muthmain@gmail.com

Kristanto Yuli Yarso
Departement of Surgery Oncology Division Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia Surakarta Indonesia

Bambang Purwanto
Department of Internal Medicine, Dr. Moewardi Hospital, Surakarta, Indonesia

Ambar Mudigdo
Department of Anatomic Pathology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia

Mustofa Mustofa
Department of Pharmacology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
Online First: August 01, 2019 | Cite this Article
Muthmainah, M., Yarso, K., Purwanto, B., Mudigdo, A., Mustofa, M. 2019. 1,4-bis-3,4,5-trimethoxy-phenyl-tetrahydro-furo(3,4-c) furan from mahogany (swietenia macrophylla king) seed significantly reduces glucose and malondialdehyde levels in diabetic wistar rats. Bali Medical Journal 8(2). DOI:10.15562/bmj.v%vi%i.1227


Background: Diabetes mellitus (DM) is an urgent global health issue with increased annual prevalence. The uncontrolled hyperglycemia may induce an oxidative stress state which could lead to the development of diabetic related complications. Several studies showed that mahogany seed contains 1,4-bis-3,4,5-trimethoxy-phenyl-tetrahydro-furo(3,4-c) furan which has glucose-lowering properties. However, its efficacy toward oxidative stress condition is yet to be investigated.

Objectives: This study aimed to examine the activity of 1,4-bis-3,4,5-trimethoxy-phenyl-tetrahydro-furo(3,4-c) furan in reducing the malondialdehyde (MDA) level as oxidative stress biomarker and blood glucose levels in diabetic rats.

Method: 36 male Wistar rats were used and divided randomly into six groups: Normal control, DM, DM+glibenclamide, DM+isolate10, DM+isolate20, and DM+Isolate40. The isolate and glibenclamide were given for 21 consecutive days. Streptozotocin and nicotinamide were used to induce the diabetic model. Levels of glucose and MDA were measured in successive phases: Before induced by streptozotocin and nicotinamide; before treatment; and after 7, 14, and 21 days of treatment.

Results: Within 21 days of treatment, mean glucose and MDA levels in each therapy group: (DM+glibenclamide, DM+isolate10, DM+isolate20, and DM+Isolate40) showed significant decreases over time. Mean of glucose and MDA levels in the therapy groups were significantly lower than in DM (diabetic control) group. Mean of glucose level in DM+Isolate40 group was significantly different from the normal control group but the MDA level showed no significant difference. The results between the DM+Isolate40 group and DM+glibenclamide group showed no significant difference.

Conclusion: The 1,4-bis-(3,4,5-trimethoxy-phenyl)-tetrahydro-furo(3,4-c) furan had significant glucose lowering and anti-oxidant effect in diabetic rats.

References

International Diabetes Federation (2017). IDF Diabetes Atlas. Eighth edition. pp: 40-41, 46.

Giacco F and Brownlee M (2010). Oxidative stress and diabetic complications. Circ Res, Vol. 107, pp: 1058-1070.

Ayala A, Munoz MF, Arguelles S (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, Vol. 2014, pp: 1-31

Ho E, Galougahi KK, Liu CC, Bhindi R, Figtree GA (2013). Biological markers of oxidative stress: Aplications to cardiovascular research and practice. Redox Biology, Vol. 1, pp: 483–491.

Judiono W, Djokomoeljanto, Hadisaputro S (2012). Biomolecular aspects of plain kefir antidiabetic potentials. International Journal of Food, Nutrition & Public Health, Vol. 5 No. 1/2/3.

Moussa SA (2008). Oxidative stress in diabetes mellitus. Romanian J. Biophys, Vol. 18, No. 3, pp: 225–236.

Perkeni (2015). Konsensus Pengelolaan dan Pencegahan Diabetes Melitus Tipe2 di Indonesia 2015. Pengurus Besar Perkumpulan Endokrinologi Indonesia, pp: 16-17.

Soegondo S (2014). Farmakoterapi pada pengendalian glikemia diabetes melitus tipe 2. In: Setiati S, Alwi I, Sudoyo AW, Simadibrata M, Setiyohadi B, Syam AF (eds). Buku Ajar Ilmu Penyakit Dalam. The second volume, the sixth edition. Publishing Center of Internal Medicine Jakarta, pp: 2328-2333.

Febrianty PP (2015). Ketergantungan Bahan Baku Obat Impor. Pharmacy Unhas. http://www.kompasiana.com (Accessed on: 4-4-2016).

Dewoto (2007). Pengembangan obat tradisional Indonesia menjadi fitofarmaka. Maj Kedokt Indon, Vol. 57, No. 7, pp: 205-211.

Hukormas Setditjen Farmalkes (2016). Menuju Indonesia Mandiri dalam Produksi Bahan Baku Obat. Kementerian Kesehatan RI. www.binfar.kemkes.go.id (Accessed on: 4-4-2016).

Krisnawati H, Kallio M, Kanninen M (2011). Swietenia macrophylla King: Ecology, Silviculture and Productivity. Bogor: CIFOR, pp: 1-5.

Eid AMM, Elmarzugi NA, El-Enshasy HA (2013). A review on the phytopharmacological effect of Swietenia macrophylla. Int J Pharm Pharm Sci, Vol 5, Suppl 3, pp: 47-53.

Moghadamtousi SZ, Goh BH, Chan CK, Shabab T, and Kadir HA (2013). Review: Biological activities and phytochemicals of Swietenia macrophylla King. Molecules,Vol.18, pp: 10465-10483.

Mursiti S (2009). Isolasi, karakterisasi, dan uji aktivitas hipoglikemik senyawa dalam biji mahoni bebas minyak dan minyak biji mahoni (Swietenia macrophylla King). Research Report. Semarang: UNNES.

Nugraha A (2012). Docking molekuler dan aktivitas antihiperglikemik senyawa aktif hasil isolasi dari ekstrak metanol biji mahoni (Swietenia macrophylla King) pada tikus diabetes setelah induksi streptozotocin. Study Program of Basic Medical Sciences and Biomedical Sciences, Faculty of Medicine, Gadjah Mada University, Yogyakarta. Thesis.

Eleazu CO, Elazu KC, Chukwuma S, Essien UN (2013). Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of Diabetes and Metabolic Disorders, Vol. 12, No. 60, pp: 1-7.

Lenzen S (2008). The mechanisms of alloxan and streptozotocin-induced diabetes. Diabetologia, Vol. 51, pp: 216–226.

Kumar V, Abbas AK, Aster JC (2013). Robbins Basic Pathology. Ninth edition. Canada: Elsevier Saunders, pp: 13-16, 19, 29-49, 58, 68-69.

Manaf A (2008). Genetical abnormality and glucotoxicity in diabetes mellitus: The background of tissue damage and infection. PDPI, Pekanbaru, Maret 2008.

Ghasemi A, Khalifi S, Jedi S (2014). Review: Streptozotocin-nicotinamide-induced rat model of type 2 diabetes. Acta Physiologica Hungarica, Vol. 101(4), pp: 408-420.

Szkudelski T (2012). Minireview: Streptozotocin-nicotinamide-induced diabetes in the rat. Caracteristics of the experimental model. Experimental Biology and Medicine, Vol. 237, pp: 481-490.

Suherman SK and Nafrialdi (2012). Insulin dan antidiabetik oral. In: Gunawan SG, Setiabudy R, Nafrialdi, Elysabeth (eds). Farmakologi dan Terapi. The fifth edition. Department of Pharmacology and Therapeutic, Faculty of Medicine, University of Indonesia, Jakarta, pp: 490-491.

Yao D and Brownlee M (2010). Hyperglycemia-induced Reactive Oxygen Species increase expression of the Receptor for Advanced Glycation End Products (RAGE) and RAGE ligands. Diabetes, Vol. 59, pp: 249-255.

Elmarakby AA and Sullivan JC (2012). Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovascular Therapeutics, Vol. 30, pp: 49–59.


No Supplementary Material available for this article.
Article Views      : 0
PDF Downloads : 0