Skip to main content Skip to main navigation menu Skip to site footer

The potency of Centella asiatica in protecting organs of rats with type 2 diabetes mellitus

  • Fitria Dhenok Palupi ,
  • Brian Wasita ,
  • Adi Magna Patriadi Nuhriawangsa ,


Background: Diabetes mellitus is a major public health problem with an increasing prevalence each year. Chronic hyperglycemia causes impaired function and organ damage. Centella asiatica is a plant that contains antioxidants with the main component of pentacyclic triterpenes that has been proven to have antioxidant, anti-inflammatory, and antimicrobial activity. This study aimed to analyze the changes in blood glucose level, the weight of liver, kidney, heart, and brain of streptozotocin-nicotinamide-induced male Wistar rats.

Methods: The research consists of four treatments: negative control (P1), positive control (P2), ethanol extract of Centella asiatica with a dose of 300 mg/kg of body weight (P3), and ethanol extract of Centella asiatica with a dose of 600 mg/kg of body weight (P4). The treatments were conducted within four weeks at the laboratory of PSPG UGM Yogyakarta. The statistical tests used were the analysis of variance (ANOVA) and the Duncan Multiple Range Test (DMRT) to determine differences between control groups and the treatment groups.

Results: The induction of nicotinamide and streptozotocin led to type 2 diabetes mellitus (p = 0.001). The administration of ethanol extract of Centella asiatica reduced blood glucose level significantly (p = 0.001). The administration of ethanol extract of Centella asiatica increased the weight of the liver significantly (p = 0.030). There were significant differences between the intervention group of Centella asiatica dose of 300 mg/kg of body weight and 600 mg/kg of body weight compared to positive control.

Conclusion: Ethanol extract of Centella asiatica with a dose of 600 mg/kg of body weight can potentially improve hyperglycemia and increase the weight of the liver organ, which is an indicator of liver cell regeneration in the animal model of diabetes mellitus type 2.


  1. American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2010; 33(Suppl 1): S62-S69. DOI: 10.2337/dc10-S062.
  2. Kementerian Kesehatan RI. Riset Kesehatan Dasar. Jakarta: Kemenkes RI; 2013.
  3. World Health Organization. Global status report on noncommunicable disease. 2014.
  4. World Health Organization (WHO). Country Profiles 2014. non comunicable disease country reports. 2014
  5. Ikmal SIQS, Huri HZ, Vethakkan SR, Wan Ahmad WA. Potential Biomarkers of Insulin Resistance and Atherosclerosis in Type 2 Diabetes Mellitus Patients with Coronary Artery Disease. International Journal of Endocrinology. 2013; 2013: 698567.
  6. Luan H, Yang L, Liu L, Liu S, Zhao X, Sui H et al. Effects of platycodins on liver complications of type 2 diabetes. Mol Med Rep. 2014; 10(3): 1597–603. DOI: 10.3892/mmr.2014.2363.
  7. American Diabetes Association (ADA). Standards of Medical Care in Diabetes. Diabetes Care. 2017; 40: S14-S80.
  8. Cintra LT, Samuel RO, Prieto AK, Sumida DH, Dezan-Junior E, Gomes-Filho JE. Oral health , diabetes , and body weight. Arch Oral Biol. 2017; 73: 94–9. DOI: 10.1016/j.archoralbio.2016.10.002.
  9. Lee SI, Kim JS, Oh SH, Park KY, Lee HG, Kim SD. Antihyperglycemic effect of Fomitopsis pinicola extracts in streptozotocin-induced diabetic rats. J Med Food. 2008; 11(3): 518–24. DOI: 10.1089/jmf.2007.0155.
  10. Meyer C, Stumvoll M, Nadkarni V, Dostou J, Mitrakou A, Gerich J. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J Clin Invest. 1998; 102(3): 619–24. DOI: 10.1172/JCI2415.
  11. Malatiali S, Francis I, Barac-Nieto M. Phlorizin prevents glomerular hyperfiltration but not hypertrophy in diabetic rats. Exp Diabetes Res. 2008; 2008: 305403. DOI: 10.1155/2008/305403.
  12. Bakris GL, Ritz E, World Kidney Day Steering Committee. The message for World Kidney Day 2009: hypertension and kidney disease - a marriage that should be prevent
  13. ed. J Hypertens. 2009; 27(3): 666–9. DOI: 10.1097/HJH.0b013e328327706a.
  14. Levey AS. Nondiabetic Kidney Disease. N Engl J Med. 2002; 347(19): 1505–1511. DOI: 10.1056/NEJMcp013462.
  15. Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, Cañizo-Gómez FJ Del. Update on the treatment of type 2 diabetes mellitus. World J Diabetes. 2016; 7(17): 354-395. DOI: 10.4239/wjd.v7.i17.354.
  16. Chauhan PK, Pandey IP, Dhatwalia VK, Singh V. Anti-diabetic effect of ethanolic and methanolic leaves extract of centella asiatica on alloxan induced diabetic rats. Int J Pharm Bio Sci. 2010; 1(1): 1–6.
  17. Yasurin P, Sriariyanun M, Phusantisampan T. Review : The Bioavailability Activity of Centella asiatica. KMUTNB Int J Appl Sci Technol. 2016; 9(1): 1–9. DOI: 10.14416/j.ijast.2015.11.001.
  18. Maulidiani, Abas F, Khatib A, Perumal V, Suppaiah V, Ismail A et al. Metabolic alteration in obese diabetes rats upon treatment with Centella asiatica extract. J Ethnopharmacol. 2016; 180: 60–69. DOI: 10.1016.j.jep.2016.01.001.
  19. Supkamonseni N, Thinkratok A, Meksuriyen D, Srisawat R. Hypolipidemic and hypoglycemic effects of Centella asiatica (L.) extract in vitro and in vivo. Indian J Exp Biol. 2014; 52(10): 965–971.
  20. Lokanathan Y, Omar N, Ahmad Puzi NN, Saim A, Hj Idrus R. Recent updates in neuroprotective and neuroregenerative potential of Centella asiatica. Malays J Med Sci. 2016; 23(1): 4–14.
  21. Pramono S, Ajiastuti D. Standardisasi ekstrak herba pegagan (C entella asiatica (L.) Urban) berdasarkan kadar asia-tikosida secara KLT-densitometri. Majalah Farmasi Indonesia. 2004; 15(3): 118–123.
  22. Nurlaily A, Noor Baitee AR, Musalmah M. Comparative Antioxidant and Anti-inflammatory Activity of Different Extracts of Centella asiatica (L.) Urban and Its Active Compounds , Asiaticoside and Madecassoside. Med & Health. 2012; 7(2): 62–72.
  23. Ranasinghe P, Jayawardana R, Galappaththy P, Constantine GR, de Vas Gunawardana N, Katulanda P. Efficacy and safety of “true†cinnamon (Cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: a systematic review and meta-analysis. Diabet Med. 2012; 29(12): 1480–92. DOI: 10.1111/j.1464-5491.2012.03718.x.
  24. Medagama AB, Bandara R. The use of Complementary and Alternative Medicines (CAMs) in the treatment of diabetes mellitus: is continued use safe and effective?. Nutr J. 2014; 13 :102-110. DOI: 10.1186/1474-2891-13-102.
  25. Nugroho AE, Lindawati NY, Herlyanti K, Widyastuti L, Pramono S. Anti-diabetic effect of a combination of andrographolide-enriched extract of Andrographis paniculata (Burm f.) Nees and asiaticoside-enriched extract of Centella asiatica L. in high fructose-fat fed rats. Indian J Exp Biol. 2013; 51(12): 1101–8.
  26. Ghasemi A, Khalifi S, Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiol Hung. 2014; 101(4): 408-20. DOI: 10.1556/APhysiol.101.2014.4.2.
  27. Kusumawati D. Bersahabat dengan Hewan Coba. Jogjakarta: Gadjah Mada University Press; 2016.
  28. Dia-sys. Glucose GOD FS Diasys Diagnostic Systems GmbH. Vol. 2006. Holzheim, Germany; 2016.
  29. Eleazu C, Iroaganachi M, Eleazu KC. Ameliorative potentials of Cocoyam (Colocasia esculenta L.) and Unripe Plantain (Musa paradisiacal L.) on renal and liver growth in streptozotocin induced diabetic rats. J Acute Dis. 2013; 2(2): 140-7. DOI: 10.1016/S2221-6189(13)60115-8.
  30. Ortiz-Andrade RR, Sanchez-Salgado JC, Navarrete-Vazquez G, Webster SP, Binnie M, Garcia-Jimenez S et al. Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation. Diabetes Obes Metab. 2008; 10(11): 1097–104. DOI: 10.1111/j.1463-1326.2008.00869.x.
  31. Kabir AU, Samad MB, D'Costa NM, Akhter F, Ahmed A, Hannan JM. Anti-hyperglycemic activity of Centella asiatica is partly mediated by carbohydrase inhibition and glucose-fiber binding. BMC Complement Altern Med. 2014; 14: 31. DOI: 10.1186/1472-6882-14-31.
  32. Lee CH, Olson P, Evans RM. Minireview : lipid metabolism , metabolic diseases , and peroxisome proliferator-activated receptors. Endocrinology. 2003; 144(6): 2201–7. DOI: 10.1210/en.2003-0288.
  33. Ma K, Zhang Y, Zhu D, Lou Y. Protective effects of asiatic acid against D-galactosamine/lipopolysaccharide-induced hepatotoxicity in hepatocytes and kupffer cells co-cultured system via redox-regulated leukotriene C4 synthase expression pathway. Eur J Pharmacol. 2009; 603(1–3): 98–107. DOI: 10.1016/j.ejphar.2008.11.054.
  34. Rice KM, Kakarla SK, Mupparaju SP, Paturi S, Katta A, Wu M et al. Shear stress activates Akt during vascular smooth muscle cell reorientation. Biotechnol Appl Biochem. 2010; 55(2): 85–90. DOI: 10.1042/BA20090258.
  35. Ramachandran V, Saravanan R. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum Exp Toxicol. 2015; 34(9): 884-93. DOI: 10.1177/0960327114561663.
  36. Zafar M, Naqvi SN. Effects of STZ-Induced Diabetes on the Relative Weights of Kidney , Liver and Pancreas in Albino Rats: A Comparative Study. Int J Morphol. 2010; 28(1): 135–42.
  37. Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther. 2008; 88(11): 1322–35. DOI: 10.2522/ptj.20080008.
  38. Motshakeri M, Ebrahimi M, Goh YM, Othman HH, Hair-Bejo M, Mohamed S. Effects of Brown Seaweed (Sargassum polycystum) Extracts on Kidney, Liver, and Pancreas of Type 2 Diabetic Rat Model. Evid Based Complement Alternat Med. 2014; 2014: 379407. DOI: 10.1155/2014/379407.
  39. Noorafshan A, Esmaeil-Zadeh B, Bahmanpour S, Poost-Pasand A. Early stereological changes in liver of Sprague-Dawley rats after streptozotocin injection. Indian J Gastroenterol. 2005; 24(3): 104–7.
  40. Nordlie RC, Foster JD, Lange AJ. Regulation of glucose production by the Liver. Annu Rev Nutr. 1999; 19: 379–406. DOI: 10.1146/annurev.nutr.19.1.379.
  41. Ramachandran V, Saravanan R. Efficacy of asiatic acid, a pentacyclic triterpene on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-induced diabetic rats. Phytomedicine. 2013; 20(3–4): 230–236. DOI: 10.1016/j.phymed.2012.09.023.
  42. Mc-Queen C. Comprehensive Toxicology Third Edition. United States: University of Arizona; 2018.
  43. James JT, Dubery IA. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules. 2009; 14(10): 3922–41. DOI: 10.3390/molecules14103922.
  44. .
  45. Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi-Samani M. The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician. 2016; 8(1): 1832–1842. DOI: 10.19082/1832.
  46. Kumar P, Prasad R, Singh KK, Roy BK. Hepatoprotective effect of Centella asiatica against paracetamol induced liver damage in broiler chicken. Indian J Poult Sci. 2009; 44(1): 101–4.
  47. Choi MJ, Zheng HM, Kim JM, Lee KW, Park YH, Lee DH. Protective effects of Centella asiatica leaf extract on dimethylnitrosamine induced liver injury in rats. Mol Med Rep. 2016; 14(5): 4521–4528. DOI: 10.3892/mmr.2016.5809.

How to Cite

Dhenok Palupi, F., Wasita, B., & Patriadi Nuhriawangsa, A. M. (2019). The potency of Centella asiatica in protecting organs of rats with type 2 diabetes mellitus. Bali Medical Journal, 8(1), 316–321.




Search Panel

Fitria Dhenok Palupi
Google Scholar
BMJ Journal

Brian Wasita
Google Scholar
BMJ Journal

Adi Magna Patriadi Nuhriawangsa
Google Scholar
BMJ Journal