ORIGINAL ARTICLE

A new modified medium for Simultaneous Cystinase and elek tests of bacteria causing diphtheria

Fitriana Fitriana , Sunarno Sunarno, Armaji Kamaludi Syarif, Muhammad Karyana, Yeva Rosana, Lucky Hartati Moehario

Fitriana Fitriana
Center for Health Resources and Services Research and Development, NIHRD, Indonesia. Email: fitri.litbang@gmail.com

Sunarno Sunarno
Center for Biomedical and Basic Technology of Health, NIHRD, Indonesia

Armaji Kamaludi Syarif
Center for Health Resources and Services Research and Development, NIHRD, Indonesia

Muhammad Karyana
Center for Health Resources and Services Research and Development, NIHRD, Indonesia

Yeva Rosana
Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia

Lucky Hartati Moehario
Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia
Online First: April 01, 2019 | Cite this Article
Fitriana, F., Sunarno, S., Syarif, A., Karyana, M., Rosana, Y., Moehario, L. 2019. A new modified medium for Simultaneous Cystinase and elek tests of bacteria causing diphtheria. Bali Medical Journal 8(1): 334-340. DOI:10.15562/bmj.v8i1.1231


Introduction: Potentially toxigenic Corynebacteria (Corynebacterium diphtheriae, Corynebacterium ulcerans, and Corynebacterium pseudotuberculosis) can produce diphtheria toxin and stated as diphtheria causative agent. The bacteria causing diphtheria could be identified by Cystinase test on the Tinsdale medium, while its toxigenicity determined by Elek test on the Elek medium. This study aims to develop a new modified medium for both Cystinase and Elek tests simultaneously.

Methods: There were ten reference strains of bacteria used for the modified medium optimization. Moreover, 15 clinical isolates were used as samples in the modified medium testing. The result of Cystinase and Elek tests on the modified medium was compared with the standardized tests on the Tinsdale and Elek mediums.

Results: Twelve of 25 isolates tested on the modified medium were identified as toxigenic strain, corresponding with the result from standardized Elek test on the Elek medium. Moreover, 16 of 25 isolates tested on the modified medium were identified as positive for Cystinase test. The similar result was obtained using the standardized Cystinase test on the Tinsdale medium. This result was visible 24 hours after incubation. The modified medium was in excellent condition with the consistent result after stored in half-finished condition for 32 days at 2-8 oC.

Conclusion: The modified medium developed in this study was a new good medium that could be used for Cystinase and toxigenicity tests simultaneously.

References

REFERENCES

Adler NR, Mahony A, and Friedman ND. Diphtheria: forgotten, but not gone. Intern Med J. 2013;43(2):206-210.

Zakikhany K & Efstratiou A. Diphtheria in Europe: current problems and new challenges. Future Microbiology 2012;7(5):595-607.

World Health Organization. Diphtheria reported cases. http://apps.who.int/ immunization_monitoring/globalsummary/timeseries/tsincidencediphtheria.html (Accessed 27 September 2017)

CDC Indonesia, Ministry of Health. Diphtheria Surveillance Data -- Monthly Integrated VPD Report (unpublished material).

Ellis H. Edwin Klebs: Discoverer of the bacillus of diphtheria. Br J Hosp Med. 2013;74(11):641.

Wagner KS, White JM, Lucenko I, Mercer D, Crowcroft NS, Neal S, and Efstratiou A. Diphtheria in the postepidemic period, Europe, 2000-2009. EID. 2012;18(2):217-225.

Wagner KS, Zakikhany K, White JM, Amirthalingam G, Crowcroft NS, and Efstratiou A. Diphtheria surveillance. In: Burkovski A, Editor. Corynebacterium diphtheriae and Related Toxigenic Species. New York: Springer; 2014. p 207-224.

Sekizuka T, Yamamoto A, Komiya T, Kenri T, Takeuchi F, Shibayama K, et al. Corynebacterium ulcerans 0102 carries the gene encoding diphtheria toxin on a prophage different from the C.diphtheriae NCTC 13129 prophage. BMC Microbiology. 2012;12:72.

Selim SA, Mohamed FH, Hessain AM, and Moussa IM. Immunological characterization of diphtheria toxin recovered from Corynebacterium pseudotuberculosis. Saudi J. Biol. Sci. 2016;23(2):282-287.

Meinel DM, Margos G, Konrad R, Krebs S, Blum H, and Sing A. Next generation sequencing analysis of nine Corynebacterium ulcerans isolates reveals zoonotic transmission and a novel putative diphtheria toxin-encoding patogenicity island. Genome Medicine. 2014;6:2013.

Colman G, Weaver E, and Efstratiou A. 1992. Screening tests for pathogenic corynebacteria. J. Clin. Pathol. 45:46-48.

Venezia J, Cassiday PK, Marini RP, Shen Z, Buckley EM, Peters Y, et al. Characterization of Corynebacterium species in macaques. J Med Microbiol. 2012;61(Pt10):1401-1408.

Hall AJ, Cassiday PK, Bernard KA, Bolt F, Steigerwalt AG, Bixler D, et al. Novel Corynebacterium diphtheriae in domestic cats. EID. 2010;16(4):688-691.

Sing A, Konrad R, Meinel DM, Mauder N, Schwabe I, and Sting R. Corynebacterium diphtheriae in a free-roaming red fox: case report and historical review on diphtheria in animals. Infection. 2016;44(4):441-445.

Dias AASO, Santos LS, Sabbadini PS, Santos CS, Silva Jr. FC, Napoleao F, et al. Corynebacterium ulcerans diphtheria: an emerging zoonosis in Brazil and worldwide. Rev. Saude Publica. 2011;45(6):1-16.

Bastos BL, Portela RWD, Dorella FA, Ribeiro D, Seyfert N, Castro TLP, et al. Corynebacterium pseudotuberculosis: immunological responses in animal model and zoonotic potential. J. Clin. Cell Immunol. 2012;S4:005

Elek SD. The plate virulence test for diphtheria. J. Clin. Path. 1949;2:250-258.

Hayden-Smith S & Schrire L. A modified toxigenicity test for Corynebacterium diphtheriae. J. Clin. Pathol. 1962;15:88.

Thomson NL & Ellner PD. 1978. Rapid determination of Corynebacterium diphtheriae toxigenicity by Counterimmunoelectrophoresis. J. Clin. Microbiol. 1978;7(5):493-494.

Engler KH, Glushkevich T, Mazurova IK, George RC and Efstratiou A. A modified Elek test for detection of toxigenic Corynebacteria in the diagnostic laboratory. J.Clin.Mirobiol. 1997;35(2): 495–498

Tinsdale GFW. A new medium for the isolation and identification of C. diphtheriae based on the production of Hydrogen Sulphide. J Path Bact. 1949;LIX:461.

Jellard CH. Comparisson of Hoyle’s medium and Billings’ modification of Tinsdale’s medium for the bacteriological diagnosis of diphtheria. J Med Microbiol. 1971;4:366-369.

Moore MS & Parsons EI. A study of a modified tinsdale’s medium for the primary isolation of Corynebacterium diphtheriae. J. Infect. Dis. 1958;102(1):88-92.

Diphtheria Guidelines Working Group. Public health control and management of diphtheria (in England and Wales): 2015 Guidelines. Public Health England. Available from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/416108/Diphtheria_Guidelines_Final.pdf.

Both L, Collins S, de Zoysa A, White J, Mandal S, and Efstratiou A. Molecular and epidemiological review of toxigenic diphtheria infections in England between 2007 and 2013. J Clin Microbiol. 2014;53(2):567-572.

Both L, Neal S, de Zoysa A, Mann G, Czumbel I, and Efstratiou A. External quality assessments for microbiologic diagnosis of diphtheria in Europe. J Clin Microbiol. 2014;52(12):4381-4384.

Sharma NC, Banavaliker JN, Ranjan R, and Kumar R. 2007. Bacteriological & epidemiological charachteristics of diphtheria cases in & around Delhi – A retrospective study. Indian J. Med. Res. 126:545-552.

Gabrielyan SA. The accelerated method for identification of pathogenic Corynebacterium. Infekciâ i Immunitet. 2013;3(4):347-350.

Efstratiou A & Maple PAC. WHO Manual for the laboratory diagnosis of diphtheria. 1994. Copenhagen: WHO Region Office for Europe.

Fitriana. Development of Medium for Detection of Potentially Toxigenic and Toxigenic Corynebacterium sp. (Master thesis). 2014. Universitas Indonesia.

Neal SE & Efstrateou. International external quality assurance for laboratory diagnosis of diphtheria. J Clin Microbiol. 2009;47(12):4037-4042.

Renom F, Gomila M, Garau M, Gallegos MdC, Guerrero D, Lalucat J, and Soriano JB. Respiratory infection by Corynebacterium striatum: epidemiological and clinical determinants. New Microbe and New Infect. 2014;2:106-114.

Kolybo DV, Labyntsev AA, Romaniuk SI, Kaberniuk AA, Oliinyk OM, Korotkevich NV, and Komisarenko SV. Immunobiology of diphtheria. Recent approaches for the prevention, diagnosis, and treatment of disease. Biotechnologia Acta. 2013;6(4):43-62.

Sangal L, Joshi S, Anandan S, Balaji V, Jonson J, Satapathy A, et al. Resurgence of diphtheria in North Kerala, India, 2016: Laboratory supported case-based surveillance outcomes. Frontiers in Public Health. 2017;5:218.

Casas V & Maloy S. Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol. 2011;6(12):1461-1473.

Zakikhany K, Neal S, and Efstratiou A. Emergence and molecular characterization of non-toxigenic tox gene-bearing Corynebacterium diphtheriae biovar mitis in the United Kingdom, 2003-2012. Euro Surveill. 2014;19(22):1-8.

Sangal V & Hoskisson PA. Evolution, epidemiology and diversity of Corynebacterium diphtheria: New perspectives on an ald foe. Infect Genet Evol. 2016;43:364-370.

Atlas RM. Handbook of microbiological media. 4th ed. USA:CRC Press;2010.

Hirsch EB &Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother. 2010;65(6):1119-1125.

Giamarellou H. Multidrug-resistant Gram-negative bacteria: how to treat and for how long. Int J Antimicrob Agents. 2010;36(Suppl 2):S50-S54.


No Supplementary Material available for this article.
Article Views      : 0
PDF Downloads : 0