ORIGINAL ARTICLE

Diagnostic yield of the combined Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy to predict malignant brain tumor

Rahmad Mulyadi , Andi Asadul Islam, Bachtiar Murtala, Jumraini Tammase, Mochammad Hatta, Muhammad Firdaus

Rahmad Mulyadi
Medical Faculty, Universitas Indonesia/Cipto Mangunkusumo National General Hospital, Jakarta Indonesia. Email: dr_rahmad_radiologi@yahoo.com

Andi Asadul Islam
Medical Faculty, Universitas Hasanuddin, Makassar, Indonesia

Bachtiar Murtala
Medical Faculty, Universitas Hasanuddin, Makassar, Indonesia

Jumraini Tammase
Medical Faculty, Universitas Hasanuddin, Makassar, Indonesia

Mochammad Hatta
Medical Faculty, Universitas Hasanuddin, Makassar, Indonesia

Muhammad Firdaus
Dharmais Cancer Hospital, Jakarta, Indonesia
Online First: April 01, 2020 | Cite this Article
Mulyadi, R., Islam, A., Murtala, B., Tammase, J., Hatta, M., Firdaus, M. 2020. Diagnostic yield of the combined Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy to predict malignant brain tumor. Bali Medical Journal 9(1): 239-245. DOI:10.15562/bmj.v%vi%i.1486


Introduction: Brain tumor is a neoplasm originating from various type of intracranial tissue. Histopathology is the gold standard to diagnose brain tumor. However, due to its invasive nature, the biopsy procedure poses a substantial risk. Therefore, advanced imaging, such as conventional Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS), has been widely developed to determine brain tumor type. Conventional MRI has been a routine examination for a suspected brain tumor in Indonesia, and with the utilization of MRS, could theoretically improve the diagnostic yield. This study aims to find diagnostic properties of conventional MRI, Choline/Creatine and Choline/NAA ratio extracted from MRS, and as a combined parameter to differentiate brain tumor type.

Methods: This cross-sectional study involved 52 patients who underwent conventional MRI, MRS, and histopathology examination for a suspected brain tumor. The cut-off from Dean Criteria of conventional MRI, Choline/Creatine and Choline/NAA ratio to classify tumor type was determined from the ROC curve and then the diagnostic parameters were calculated from cross-tabulation. Also, a novel approach was made with logical-mathematical equation (disjunction/ ˅ / “or” and conjunction/ ˄ / “and”) to combined parameter obtained from MRI and MRS to predict histopathological brain tumor type.

Results: Conventional MRI combined with MRS improve diagnostic yield compared to a single parameter with a sensitivity of 87.5%, a specificity of 88.6%, accuracy of 88.5%, PPV of 58.3%, NPV of 97.5%, LR+ of 7.68, dan LR- of 0.1.

Conclusion: Combination of conventional MRI and MRS parameter could improve the diagnostic yield in differentiating the type of brain tumor.

References

Majid N, Ali Z, Rahman MR, Akhter A, Rajib RC, Saha UK. Histological Subtypes of Brain Tumor. Chattagram Maa-O-Shishu Hosp Med Coll J. 2013;12(1):9–11.

Kyle M, Clause EB, Wrensch MR. Biology. In: Bernstein M, Berger M, editors. Neuro-Oncology: The Essential. 3rd ed. Stuttgart: Georg Thieme Verlag; 2015. p. 1–16.

Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, Murphy M, et al. Metabolic profiles of human brain tumors using quantitative in vivo1H magnetic resonance spectroscopy. Magn Reson Med. 2003;49(2):223–32.

Mandell DM, Kucharczyk W. Evaluation. In: Bernstein M, Berger M, editors. The Essentials Neuro-Oncology. 3rd ed. Stuttgart: Georg Thieme Verlag; 2015. p. 55–76.

Dean BL, Drayer BP, Bird CR, Flom RA, Hodak JA, Coons SW, et al. Gliomas: classification with MR imaging. Radiology. 1990;174(2):411–5.

Chishty IA, Rafique MZ, Hussain M, Akhtar W, Ahmed MN, Sajjad Z, et al. MRI characterization and histopathological correlation of primary intra-axial brain glioma. J Liaquat Univ Med Heal Sci. 2010;9(2):64–9.

Drevelegas A, Karkavelas G. High-Grade Gliomas. In: Drevelegas A, editor. Imaging of Brain Tumors with Histological Correlations. 2nd ed. Berlin, Heidelberg, Heidelberg: Springer Berlin Heidelberg; 2011. p. 166–76.

Wiryadana KA, Supadmanaba IGP, Samatra DPGP. Progress and potential roles blood biomarkers of ischemic stroke in clinical setting. Indones J Biomed Sci. 2017;11(2):19–29. Available from: https://ijbs-udayana.org/index.php/ijbs/article/viewFile/138/173

Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24(10):1989–98.

Naidich R, Castillo M, Cha S, Smimiotopoulos J. Imaging of the Brain. 1st editio. Philadelpia: Saunders; 2012.

Naveed MA, Goyal P, Malhotra A, Liu X, Gupta S, Mangla M, et al. Grading of oligodendroglial tumors of the brain with apparent diffusion coefficient, magnetic resonance spectroscopy, and dynamic susceptibility contrast imaging. Neuroradiol J. 2018;31(4):379–85.

International Agency for Research on Cancer. WHO Classification of Tumours of the Central Nervous System (IARC WHO Classification of Tumours). World Health Organization. 2016.

Jazayeri SB, Rahimi-Movaghar V, Shokraneh F, Saadat S, Ramezani R. Epidemiology of Primary CNS Tumors in Iran: A Systematic Review. Asian Pacific J Cancer Prev. 2013;14(6):3979–85.

El-Zein R, Bondy M, Wrensch M. Epidemiology of brain tumors. In: Ali Osman F, editor. Brain Tumors. New Jersey: Human Press Inc.; 2005. p. 3–18.

Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol. 2015;17(suppl 4):iv1–62.

Miranda-Filho A, Piñeros M, Soerjomataram I, Deltour I, Bray F. Cancers of the brain and CNS: global patterns and trends in incidence. Neuro Oncol. 2016;19(2):now166.

Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007-2011. Neuro Oncol. 2014;16(suppl 4):iv1–63.

Guzmán-De-Villoria JA, Mateos-Pérez JM, Fernández-García P, Castro E, Desco M. Added value of advanced over conventional magnetic resonance imaging in grading gliomas and other primary brain tumors. Cancer Imaging. 2014;14(1):35.

Hamed SAI, Ayad CE. Grading of Brain Tumors using MR Spectroscopy : Diagnostic value at Short and Long TE. IOSR-JDMS. 2017;16(10):87–93.

Shokry A. MRS of brain tumors: Diagrammatic representations and diagnostic approach. Egypt J Radiol Nucl Med. 2012;43(4):603–12.

El Sherbeny AE, El-Shafey MH, Biomy SL, Shakal AA, Hefeda MM, Seiam A-HR. Diagnostic yield of combined magnetic resonance spectroscopy and diffusion weighted imaging in intracranial neoplasms. Egypt J Radiol Nucl Med. 2014;45(3):849–58.

Dawoud MAE, Sherif MF, Eltomey MA. Apparent diffusion coefficient and Magnetic resonance spectroscopy in grading of malignant brain neoplasms. Egypt J Radiol Nucl Med. 2014;45(4):1215–22.

Fawzy FM, Almassry HN, Ismail AM. Preoperative glioma grading by MR diffusion and MR spectroscopic imaging. Egypt J Radiol Nucl Med. 2016;47(4):1539–48.

Delorme S. Applications of MRS in the evaluation of focal malignant brain lesions. Cancer Imaging. 2006;6(1):95–9.


Article Views      : 0
PDF Downloads : 0