Skip to main content Skip to main navigation menu Skip to site footer

Introduction to dendritic cell vaccines immunotherapy for glioblastoma multiforme : A novel approach


Background: The modality of therapy in this era is quite sophisticated. The mortality rate of patients diagnosed with glioblastoma multiforme is still high. It might be due to the late diagnosis of the tumors since most in the early stages some tumors do not show any significant symptoms or the symptoms usually misdiagnosed with another disease. Nowadays there is an uptrend of therapeutic methods called immunotherapy which declared as the fourth approachment for glioblastoma multiforme (GBM). In RSPAD Gatot Soebroto Jakarta, the author starts this approach using dendritic cell vaccines in the specialized department called the Indonesia Army Cell Cure Center.

Aim: The report aims to describe a case of GBM treated by dendritic cell vaccines.

Case Report: A 52-year-old woman had weakness in her left extremities and visual impairment in the left eye since 2016. The patient was brought to RSPAD in August 2016 with a history of cerebral hemorrhage, then already underwent a craniotomy at the right temporoparietal region. After biopsies and tissues examination, the patient later diagnosed with GBM. As for judging the natural history of the diseases, the team decided to counsel the patient and her family conducting a new treatment strategy for GBM, immunotherapy. The immunotherapy approach performed in RSPAD was the dendritic cell (DC) vaccines therapy. As regard to post-DC vaccines therapy, the patient showed a significant improvement in her clinical condition (Karnofsky performance status increased from 30% to 60%). Also, the patient surpassed the average survival rate. Thus, the patient still scheduled for a routine follow up and a round of examinations to preserve the patient improved condition.

Conclusion: The patient who has immunotherapy strategy especially dendritic cell vaccines therapy has shown an improved clinical status and survival rate for GBM, more than the average survival rates. These findings might give us more insights into how dendritic cell vaccines therapy can be involved as the fourth therapeutic strategies on treating patients with GBM.


  1. Rock K, McArdle O, Forde P, et al. (2014). A clinical review of treatment outcomes in glioblastoma multiforme the validation in a non-trial population of the results of a randomized Phase III clinical trial: has a more radical approach improved survival? Br J Radiol, 85, 729-33
  2. Zukiel R, Piestrzeniewicz R, Nowak S, Jankowski R, Wieloch M. Historia Leczenia Operacyjnego Guzow Mozgu. Neuroskop 2004;6:9-19
  3. Iacob G, Dinca EB (2009). Current data and strategy in glioblastoma multiforme. J Med Life, 2, 386
  4. Thakkar JP, Dolecek TA, Horbinski C, et al. (2014). Epidemiologic and molecular prognostic review of Glioblastoma. Cancer Epidemiol Biomarkers Prev, 23, 1985-96
  5. McLendon RE, Halperin EC. Is the Long-term Survival of Patients with Intracranial Glioblastoma Multiforme Overstated?. Cancer. 2003;98:1745-1748
  6. Berger MS, Wilson CB, editors (1999) The gliomas. 1st edition. Philadelphia: WBSaunders. 796 p
  7. Kristiani, Erna. (2018). Gambaran Klinikopatologik Astrositoma High Grade. Medicinus. 4. 10.19166/med.v4i9.1190
  8. Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL (2007). Epidemiology of brain tumors. Neurol Clin, 25, 867-90
  9. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol 2005; 109: 93-108
  10. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO Classification of tumors of the Central Nervous System. Acta Neuropathol 2007;114:97-109
  11. JovÄevska I, KoÄevar N, Komel R (2013). Glioma and glioblastoma how much do we (not) know?.MolClinOncol, 1, 935-41
  12. Scherer H. Cerebral astrocytomas and their derivatives. Am J Cancer1940;40:159–98
  13. Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int. 2014;5:64.
  14. Ellor SV, Pagano-Young TA, Avgeropoulos NG. Glioblastoma: Background, standard treatment paradigms, and supportive care considerations. Journal of Law, Medicine, and Ethics. 2014; 42:171–182. DOI: 10.1111/jlme.12133
  15. Salvati M, Frati, A, Russo N, et al. (2003). Radiation-induced gliomas: Report of 10 cases and review of the literature. Surg Neurol, 60, 60-7
  16. Kabat GC, Etgen AM, Rohan TE (2010). Do steroid hormones play a role in the etiology of glioma?.CancerEpidemiol Biomarkers Prev, 19, 2421-27
  17. Kleihues P, Louis DN, Scheithauer BW, et al. TheWHO classification of tumors of the nervous system.JNeuropatholExpNeurol 2002;61(3):215–225.
  18. Fine HA, The basis for current treatment recommendations for malignant gliomas J Neurooncol, 1994; 20: 111-20
  19. Young RM, Jamshidi A, Davis G, Sherman JH. Current trends in the surgical management and treatment of adult glioblastoma. Annals of Translational Medicine. 2015; 3:121
  20. Clarke CRA (2005). Neurological diseases in Kumar & Clark Clinical Medicine. Kumar P and Clark M. 6th ed. Elsevier Saunders, Edinburgh, pp 1244-45
  21. Salah Uddin ABM, Jarmi T (2015). Neurologic manifestations of glioblastoma multiforme clinical presentation [online]. Available at: article/1156220-clinical
  22. Omuro A, DeAngelis LM (2013). Glioblastoma and other malignant gliomas: a clinical review. J Am Med Assoc, 310, 1842–50
  23. Jung WH, Choi S, Oh KK, Chi JG. Congenital glioblastoma multiforme-report of an autopsy case. J Korean Med Sci 1990;5:225-31
  24. Nelson SJ, Cha S (2003). Imaging glioblastoma multiforme. J Cancer, 9, 134-45
  25. Ulutin C, Fayda M, Aksu G, Cetinayak O, Kuzhan O, Ors F, Beyzadeoglu M. Primary glioblastoma multiforme in younger patients: a single-instruction experience. Tumori 2006; 92: 407-11
  26. Katsetos CD, Draberova E, Legido A, Dumontet C, Draber P. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. Class III beta-tubulin. J Cell Physiol 2009;221:505-13
  27. Schultz S, Pinsky GS, Wu NC, Chamberlain MC, Rodrigo AS, Martin SE. Fine needle aspiration diagnosis of extracranial glioblastoma multiforme: Case report and review of the literature. Cytojournal 2005; 2:19
  28. National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology: Central nervous system cancers [v.1.2015]. 2015 Retrieved from
  29. Mrugala MM (2013). Advances and challenges in the treatment of glioblastoma: a clinician’s perspective. Disco Med, 15, 221-30.
  30. Scott J, Tsai Y-Y, Chinnaiyan P, Yu H-HM (2011). Effectiveness of radiotherapy for elderly patients with glioblastoma. Int J RadiatOncolBiol Phys, 81, 206-10
  31. Walker MD, Strike TA, Sheline GE. An Analysis of Dose-effect Relationship in the Radiotherapy of Malignant Gliomas. Int J RadiatOncolBiol Phys 1979;5:1725-1731
  32. Davis ME, Stoiber AM. Glioblastoma multiforme: Enhancing survival and quality of life. Clinical Journal of Oncology Nursing. 2011; 15:291–297
  33. Hopkins K. Phase III Study of Rindopepimut/GM-CSF in Patients With Newly Diagnosed Glioblastoma (ACT IV). Bethesda (MD): National Library of Medicine (US), 2011-2014. Available from:
  34. Kanu OO, Mehta A, Di C, et al. Glioblastoma multiforme: a review of therapeutic targets. Expert Opin Ther Targets. 2009:13:701e718
  35. Newton HB, Slivka MA, Volpi C et al. Intra-arterial carboplatin and intravenous etoposide for the treatment of metastatic brain tumors. J Neurooncol2003;61:35–44
  36. Boulikas T (2007) Molecular mechanisms of cisplatin and its liposomal encapsulated form, LipoplatinTM. LipoplatinTM as chemotherapy and antiangiogenesis drug. Cancer Ther5:349–376
  37. Gattinoni L, Powell DJ, Rosenberg SA. Adaptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383-393
  38. Mesiano G, Todorovic M, Gammaitoni L (2012) Cytokine-induced killer(CIK) cells as feasible and effective adoptive immunotherapy for the treatment of solid tumors. Expert OpinBiolTher 12: 673-684
  39. Gonzalez-Carmona MA, Marten A, Hoffmann P (2006) Patient-derived dendritic cells transduced with an a-fetoprotein-encoding adenovirus and co-cultured with autologous cytokine-induced lymphocytes induce a specific and strong immune response against hepatocellular carcinoma cells. Liver Int 26: 369-379
  40. Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 1999:10:281-287
  41. Ichim CV. Revisiting immunosurveillance and immunostimulation: implications for cancer immunotherapy. J Transl Med 2005;3:8
  42. Coley WB. Contribution to the knowledge of sarcoma. Ann Surg 1891;14:199-220
  43. Hsu F, Benike C, et al.Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med, 1996:2:52–8
  44. Nussenzweig MC, Steinman RM, Gutchinov B, and Cohn ZA: Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. J Exp Med 152: 1070 1084, 1980
  45. Ochoa AC, Gromo G, Alter BJ. Long-term growth of lymphokine-activated killer (LAK) cells: the role of anti-CD3, beta-IL 1, interferon gamma and beta. J Immunol 1987;138:2728-2733
  46. Cho DY, Yang WK, Lee HC, et al. Adjuvant Immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: A phase II clinical trial. World Neurosurg 2011;7:736-44
  47. Alvarez-Dominguez C, Calderón-Gonzalez R, Terán-Navarro H, et al. Dendritic cell therapy in melanoma. Ann Transl Med. 2017;5(19):386
  48. Tel J, Schreibelt G, Sittig SP, Mathan TS, Buschow SI, Cruz LJ, et al. Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lower Ag uptake than myeloid dendritic cell subsets. Blood 2013b;121:459-467
  49. Malik B, Rath G, Goyal AK. Are the anatomical sites for vaccine administration selected judiciously?.IntImmunopharmacol 2014;19:17-26
  50. Pyzer AR, Avigan DE, Rosenblatt J. Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies. Hum VaccinImmunother 2014;10:3125-3131
  51. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245–52.
  52. Lamborn KR, Chang SM, Prados MD. Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro Oncol. 2004;6(3):227
  53. Yersal, Ozlem. (2017). Clinical outcome of patients with glioblastoma multiforme: Single center experience. Journal of Oncological Sciences. 3. 10.1016/j.jons.2017.10.005
  54. Licata C, Turazzi S, Delfini R. Bleedingcerebral neoplasms with symptomatic hematoma/Comment. J NeurosurgSci2003;47:201
  55. Choi G, Park DH, Kang SH, Chung YG. Glioma mimicking a hypertensive intracerebral hemorrhage. J KoreanNeurosurgSoc 2013;54:125-7.
  56. Zimmerman RA, Bilaniuk LT.Computed tomography of acute intratumoral hemorrhage. Radiology1980;135:355-59.
  57. Can SM, Aydin Y, Turkmenoglu O, et al. Giant Cell Glioblastoma Manifesting as Traumatic Intracerebral Hemorrhage.Neurol medico-chirurgica.2002;42:568-71
  58. Wirata, G., Karmaya, I., Muliarta, I. 2019. Long-term visual deprivation inhibits the visual lobe neocortex cytoarchitecture increment in 42 days male rats (Rattus norvegicus): a stereological study. Indonesia Journal of Biomedical Science 13(1). DOI:10.15562/ijbs.v13i1.183
  59. Tandio, D., Manuaba, A. 2016. Safety Procedure for Biosafety and Controlling a Communicable Disease: Streptococcus Suis. Bali Medical Journal 5(2): 260-262. DOI:10.15562/bmj.v5i2.220
  60. Schrader B, Barth H, Lang EW, et al.Spontaneous intracranial hematoma caused by neoplasms. ActaNeurochir (Wien) 2000;142:979-85

How to Cite

Putranto, T. A., Wibisono, D., Astoro, N. W., Yana, M. L., Rantung, Y., & Manuaba, I. B. A. P. (2019). Introduction to dendritic cell vaccines immunotherapy for glioblastoma multiforme : A novel approach. Bali Medical Journal, 8(1), 371–375.




Search Panel

Terawan Agus Putranto
Google Scholar
BMJ Journal

Djoko Wibisono
Google Scholar
BMJ Journal

Nyoto Widyo Astoro
Google Scholar
BMJ Journal

Martina Lily Yana
Google Scholar
BMJ Journal

Yudo Rantung
Google Scholar
BMJ Journal

Ida Bagus Amertha Putra Manuaba
Google Scholar
BMJ Journal