Skip to main content Skip to main navigation menu Skip to site footer

Ethanol extract of propolis decreases the Interleukin-8 (IL-8) expression and blood Malondialdehyde (MDA) level in otitis media rat model induced by Pseudomonas aeruginosa

Abstract

Background: Pseudomonas aeruginosa is one of the bacteria that cause otitis media, leading to progressive structural damage of the middle ear mucosa due to virulence factor, toxin, and enzyme produced. The excessive inflammatory process can cause oxidative stress, which will aggravate tissue damage, thus difficult to cure. This study aimed to assess the effect of ethanol extract of propolis (EEP) in decreasing IL-8 expression and blood MDA level in the otitis media rat model induced by Pseudomonas aeruginosa.

Methods: A randomized controlled trial was conducted among 42 SDF Sprague-Dawley rats. They were divided into 6 groups: normal control, negative control: Otitis Media (OM), positive control: OM + Ciprofloxacin 20 mg/kg body weight/day, OM + EEP 200 mg/kg body weight/day, OM + Ciprofloxacin 20 mg/kg body weight/day + EEP 100 mg/kg body weight, OM + Ciprofloxacin 20 mg/kg body weight/day + EEP 200 mg/kg body weight/day. Induction of Pseudomonas aeruginosa to obtain the OM model was administered on the first day of the study and waited for 28 days before treatments were given. Data were analyzed with SPSS version 23 for Windows.

Results: After 14 days of treatment, the expression of IL-8 and MDA level in each treatment group (OM + Ciprofloxacin, OM + EEP 200, OM + Ciprofloxacin + EEP 100, OM + Ciprofloxacin + EEP 200) revealed significant decrease compared to OM (negative control group) (p<0.05). The reduction of IL-8 expression between the Ciprofloxacin group and EEP 200 was not significantly different (p>0.05). There was a significant difference between the Ciprofloxacin group and Ciprofloxacin + EEP 100, and between Ciprofloxacin and Ciprofloxacin + EEP 200 (p<0.05).

Conclusion: Ethanol extract of propolis decreased IL-8 expression and MDA level in the OM rat model induced by Pseudomonas aeruginosa.

References

  1. Wiertsema SP, Leach AJ. Theories of Otitis Media Pathogenesis with a Focus on Indigenous Children. Med J Aust 2009;191(9):S50.
  2. Sahu SK, Narasimham MV, Mohanty I, Padhi S, Panda P, Parida B. Microbiological Profile of Chronic Suppurative Otitis Media and In vitro Antibiotic Sensitivity Pattern in a Tertiary Care Hospital. MKCG Medical College Otolaryngology Online Jurnal ; 2014.
  3. Mittal R, Lisi C V, Gerring R, Mittal J, Mathee K, Narashiman G, et al. Current concepts in the pathogenesis and treatment of chronic suppurative otitis media. Journal of Medical Microbiology 2015;64:1103-16.
  4. Acuin J. Chronic Suppurative Otitis Media Burden of Illnes and Management Options. Geneva, Switzerland : World Health Organization ;2004:7-28
  5. Kurabi A, Pak K, Ryan AF, Wasserman SI. Innate Immunity : Orchestrating Inflammation and Resolution of Otitis Media. Curr Allergy Asthma Rep 2016; 16(1):6.
  6. Lin CK, Kazmiercak BI. Inflammation : A Double – Edged Sword in the Response to Pseudomonas aeruginosa Infection. Journal of Innate Immunity 2017 ;9:250-61
  7. Dharma B, Mulyantari N, Prabawa I. Analisis korelasi kadar serum prokalsitonin dengan jumlah leukosit pada penderita dengan kecurigaan sepsis di RSUP Sanglah, Bali, Indonesia. 2020. Intisari Sains Medis;11(1):179-182.
  8. Abbas AK, Litchman AH, Pillai S. Cellular and Molecular Immunology. 7th edition. United States of America : Elsevier Sunders 2012:75-8, 168-9.
  9. Smirnova MG, Birchall JP, Pearson JP. The immunoregulatory and allergy-associated cytokines in the aetiology of the otitis media with effusion. Mediators of Inflammation 2004;13(2):75-88.
  10. Juhn SK, Jung MK, Hoffman MD, Drew BR, Preciado DA, Sausen NJ, et al. The Role of Inflammatory Mediators in the Pathogenesis of Otitis Media and Sequelae. Clinical and Experimental Otorhinolaryngology 2008;1(3):117-38.
  11. Adly AAM. Oxidative stress and disease. An updated review. Res. J Immunol 2010;3(2):129-45.
  12. Alhazmi A. Pseudomonas aeruginosa – Pathogenesis and Pathogenic Mechanisms. International Journal of Biology 2015;7(2):44-55.
  13. Ayala MS. Lipid Peroxidation : Production, Metabolism and Signaling Mechanism of Malondialdehyde and 4-Hydroxy-2 Nonenal.Oxid Med Cell Longev 2014; 1-31.
  14. Farooqui T and Farooqui AA. Beneficial effects of propolis on human health and neurological diseases. Front Biosci (Elite ED) 2012;4:773-93.
  15. Sarsono, Syarifah I, Martini, Diding HP. Identifikasi caffeic acid phenethyl ester dalam ekstrak etanol propolis isolat gunung lawu. Jurnal Bahan Alam Indonesia 2012;8(2):132-6.
  16. Song JJ, Cho JG, Hwang SJ, Cho CG, Park SW, Chae SW. Inhibitory effect of caffeic acid phenethyl ester (CAPE) on LPS-induced inflammation of human middle ear epithelial cells. Acta Oto-Laryngologica 2008;128:1303-7.
  17. Min YD, Choi CH, Bark H, Son HY, Park HH, Lee S, et al. Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-kB and p38 MAPK in HMC-1 human mast cell line. Inflammation Research 2007;56(5):210-5.
  18. Naggar YA, Sun J, Robertson A, Giesy JP, Wisemasn S. Chemical characterization and antioxidant properties Canadian propolis. Journal of Agricultural Research 2016;55(4):305-14.
  19. Chai W, Zhang J, Duan Y, Pan D, Liu W, Li Y, et al. Pseudomonas pyocyanin stimulates IL-8 expression through MAP K and NF-kB pathways in differentiated U937 cells. Biomed Central;2014.
  20. Serasanambati M, Chilakapati S R. Function of Nuclear Factor kappa B (NF-kB) in human diseases-A Review. South Indian Journal of Biological Sciences 2016;2(4): 368-87.
  21. Chen SC, Huang WC, Pang JH, Wu YH, Cheng CY. Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-kB Signaling Pathways. Int J Mol; 2019.
  22. Xiong G, Ji W, Wang F, Zhang F, Xue P, Cheng M. Quercetin Inhibits Inflammatory Response Induced by LPS from Porphyromonas gingivalis Human Gingival Fibroblasts via Suppressing NF-kB Signaling Pathway. Biomed Research International; 2019.
  23. Rada B, Leto TL. Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends in Microbiology 2013;21(2): 73-81.
  24. Yan F, Li W, Jono H, Li Q, Zhang S, Li JD, et al. Reactive oxygen species regulate Pseudomonas aeruginous lipopolysaccharide-induced MUC5AC mucin expression via PKC-NADPH oxidase-ROS-TGF-α- signaling pathways in human airway epithelial cells. Biochemical and Biophysical Research Communication 2008:513-9.
  25. Mittal M, Siddiqui M R, Tran K, Reddy SP, Malik AB. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxidants & Redox Signaling 2014;20 (7):1126-52.
  26. Daleprane JB, Abdalla DS. Emerging Roles of Propolis: Antioxidant, Cardioprotective, and Antiangiogenic Actions. Evidence-Based Complementary and Alternative Medicine, 2013.
  27. Yangi B, Ustuner MC, Dincer M, Ozbayer C, Tekin N, Ustuner D, et al. Propolis Protects Endotoxin Induced Acute Lung and Liver Inflammation Through Attenuating Inflammatory Response and Oxidative Stress. Journal of Medicine Food 2018;00(0): 1-10.
  28. Silva BB, Rosalen PL, Alencar SM, Mayer MPA. Anti-inflammatory mechanisms of neovestitol from Brazilian red propolis in LPS-activated macrophages. Journal of Functional Foods 2017:440-7.
  29. Aliyazicioglu Y, Demir S, Turan I, Cakiroglu TN. Preventive and Protective Effects of Turkish Propolis on H2O2- Induced DNA Damage in Foreskin Fibroblast Cell Lines. Acta Biologica Hungaria 2011;62(4): 388-96.
  30. Rehman A, Wayne MP, Lamont L. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. Journal of Medical Microbiology 2019;68:1-10.
  31. Lu Q, Yu J, Bao L, Ran T, Zhong H. Effects of Combined Treatment With Ambroxol and Ciprofloxacin on Catheter-Associated Pseudomonas Aeruginosa Biofilms in a Rat Model. Chemotherapy.2013;59:51-9.

How to Cite

Sudrajad, H., Mudigdo, A., Purwanto, B., & Setiamika, M. (2020). Ethanol extract of propolis decreases the Interleukin-8 (IL-8) expression and blood Malondialdehyde (MDA) level in otitis media rat model induced by Pseudomonas aeruginosa. Bali Medical Journal, 9(2), 504–510. https://doi.org/10.15562/bmj.v9i2.1799

HTML
0

Total
13

Share

Search Panel