Skip to main content Skip to main navigation menu Skip to site footer

Exercise and cardiomyocyte regeneration

Abstract

Cardiovascular disease is the most common cause of death. Many researchers have evaluated the effect of exercise on heart function improvement, but studies about how exercise can affect heart regeneration are rare. Most of the previous studies only assess biomarkers that indicate heart damage. GATA-4 Transcription Factor is one of the transcription factors that form heart cells, showing the heart's ability to function properly under pressure. Cardiac-restricted zinc-finger TF GATA-4 is a survival factor that can break the vicious cycle of post-MI heart failure through increased myocardial angiogenesis, decreased apoptosis, and increased c-kit cell generation. Further research is needed because of its critical role in heart regeneration, whether GATA-4 can be used as an excellent cardiac biomarker in the future, and how the role of exercise or physical exercise on GATA-4 protein and its expression in cardiac regeneration.

References

  1. WHO. WHO Fact sheets, 2017. from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Fact sheets, 2017.
  2. WHO. Prevention of Recurrences of Myocardial Infarction and Stroke Study. Who. Published online 2013. doi:10.1128/AEM.71.3.1668
  3. Rittoo D, Jones A, Lecky B, Neithercut D. Elevation of Cardiac Troponin T, But Not Cardiac Troponin I, in Patients With Neuromuscular Diseases. J Am Coll Cardiol. Published online 2014. doi:10.1016/j.jacc.2014.03.027
  4. Li F, Yi L, Yan H, et al. High-sensitivity cardiac troponin T release after a single bout of high-intensity interval exercise in experienced marathon runners. J Exerc Sci Fit. Published online 2017. doi:10.1016/j.jesf.2017.08.001
  5. T.M.H. E, M.T.W. V, K. G, M.T.E. H, D.H.J. T. The impact of obesity on cardiac troponin levels after prolonged exercise in humans. Eur J Appl Physiol. Published online 2012.
  6. Van Berlo JH, Molkentin JD. An emerging consensus on cardiac regeneration. Nat Med. Published online 2014. doi:10.1038/nm.3764
  7. Broughton KM, Wang BJ, Firouzi F, et al. Mechanisms of cardiac repair and regeneration. Circ Res. Published online 2018. doi:10.1161/CIRCRESAHA.117.312586
  8. Forough R, Scarcello C, Perkins M. Cardiac biomarkers: A focus on cardiac regeneration. J Tehran Univ Hear Cent. Published online 2011.
  9. Broderick TL, Parrott CR, Wang D, Jankowski M, Gutkowska J. Expression of cardiac GATA4 and downstream genes after exercise training in the db/db mouse. Pathophysiology. Published online 2012. doi:10.1016/j.pathophys.2012.06.001
  10. Haubner BJ, Adamowicz-Brice M, Khadayate S, et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging (Albany NY). Published online 2012. doi:10.18632/aging.100526
  11. Senyo SE, Lee RT, Kühn B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res. Published online 2014. doi:10.1016/j.scr.2014.09.003
  12. Lin Z, Pu WT. Strategies for cardiac regeneration and repair. Sci Transl Med. Published online 2014. doi:10.1126/scitranslmed.3006681
  13. Pinto AR, Ilinykh A, Ivey MJ, et al. Revisiting cardiac cellular composition. Circ Res. Published online 2016. doi:10.1161/CIRCRESAHA.115.307778
  14. Laflamme MA, Murry CE. Heart regeneration. Nature. Published online 2011. doi:10.1038/nature10147
  15. Kikuchi K, Poss KD. Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol. Published online 2012. doi:10.1146/annurev-cellbio-101011-155739
  16. Hashimoto H, Olson EN, Bassel-Duby R. Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol. Published online 2018. doi:10.1038/s41569-018-0036-6
  17. Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell Tissue Res. Published online 2016. doi:10.1007/s00441-016-2431-9
  18. Zhang Y, Mignone J, Robb Maclellan W. Cardiac regeneration and stem cells. Physiol Rev. Published online 2015. doi:10.1152/physrev.00021.2014
  19. Yilbas AE, Hamilton A, Wang Y, et al. Activation of GATA4 gene expression at the early stage of cardiac specification. Front Chem. Published online 2014. doi:10.3389/fchem.2014.00012
  20. Dobrzycki T, Lalwani M, Telfer C, Monteiro R, Patient R. The roles and controls of GATA factors in blood and cardiac development. IUBMB Life. Published online 2020. doi:10.1002/iub.2178
  21. Somani S, Shukla J. The P300 wave of Event-Related Potential. Res Rev J Med Heal Sci. Published online 2014.
  22. Rysä J, Tenhunen O, Serpi R, et al. GATA-4 is an angiogenic survival factor of the infarcted heart. Circ Hear Fail. Published online 2010. doi:10.1161/CIRCHEARTFAILURE.109.889642
  23. Jun JH, Shim JK, Ryoo HM, Kwak YL. Erythropoietin-activated ERK/MAP kinase enhances GATA-4 acetylation via phosphorylation of serine 261 of GATA-4. J Cell Physiol. Published online 2013. doi:10.1002/jcp.24121
  24. He JG, Li HR, Han JX, et al. GATA-4-expressing mouse bone marrow mesenchymal stem cells improve cardiac function after myocardial infarction via secreted exosomes. Sci Rep. Published online 2018. doi:10.1038/s41598-018-27435-9
  25. Xu M, Millard RW, Ashraf M. Role of GATA-4 in differentiation and survival of bone marrow mesenchymal stem cells. In: Progress in Molecular Biology and Translational Science. ; 2012. doi:10.1016/B978-0-12-398459-3.00010-1
  26. Gao XR, Tan YZ, Wang HJ. Overexpression of Csx/Nkx2.5 and GATA-4 Enhances the Efficacy of Mesenchymal Stem Cell Transplantation After Myocardial Infarction. Circ J. Published online 2011. doi:10.1253/circj.CJ-11-0238
  27. Li H, Zuo S, Pasha Z, et al. GATA-4 promotes myocardial transdifferentiation of mesenchymal stromal cells via up-regulating IGFBP-4. Cytotherapy. Published online 2011. doi:10.3109/14653249.2011.597380
  28. Singh MK, Li Y, Li S, et al. Gata4 and Gata5 cooperatively regulate cardiac myocyte proliferation in mice. J Biol Chem. Published online 2010. doi:10.1074/jbc.M109.038539
  29. Van Berlo JH, Aronow BJ, Molkentin JD. Parsing the roles of the transcription factors GATA-4 and GATA-6 in the adult cardiac hypertrophic response. PLoS One. Published online 2013. doi:10.1371/journal.pone.0084591
  30. Malek Mohammadi M, Kattih B, Grund A, et al. The transcription factor GATA 4 promotes myocardial regeneration in neonatal mice . EMBO Mol Med. Published online 2017. doi:10.15252/emmm.201606602
  31. Schlesinger J, Schueler M, Grunert M, et al. The cardiac transcription network modulated by gata4, mef2a, nkx2.5, srf, histone modifications, and microRNAs. PLoS Genet. Published online 2011. doi:10.1371/journal.pgen.1001313
  32. Steinhauser ML, Lee RT. Regeneration of the heart. EMBO Mol Med. Published online 2011. doi:10.1002/emmm.201100175
  33. Naderi N, Hemmatinafar M, Gaeini AA, et al. High-intensity interval training increase GATA4, CITED4 and c-Kit and decreases C/EBPβ in rats after myocardial infarction. Life Sci. Published online 2019. doi:10.1016/j.lfs.2019.02.045
  34. Bahramian A, Mirzaei B, Karimzadeh F, et al. The effects of exercise training intensity on the expression of C/EBPβ and CITED4 in rats with myocardial infarction. Asian J Sports Med. Published online 2018. doi:10.5812/asjsm.59300
  35. Xiao J, Xu T, Li J, et al. Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells. Int J Clin Exp Pathol. 2014;7(2):663-669.

How to Cite

Juhanna, I. V., Adiputra, I. N., Adiatmika, I. P. G., Muliarta, I. M., Linawati, N. M., & Griadhi, I. P. A. (2020). Exercise and cardiomyocyte regeneration. Bali Medical Journal, 9(3), 947–951. https://doi.org/10.15562/bmj.v9i3.2029

HTML
0

Total
14

Share

Search Panel

Indira Vidiari Juhanna
Google Scholar
Pubmed
BMJ Journal


I Nyoman Adiputra
Google Scholar
Pubmed
BMJ Journal


I Putu Gede Adiatmika
Google Scholar
Pubmed
BMJ Journal


I Made Muliarta
Google Scholar
Pubmed
BMJ Journal


Ni Made Linawati
Google Scholar
Pubmed
BMJ Journal


I Putu Adiartha Griadhi
Google Scholar
Pubmed
BMJ Journal