ORIGINAL ARTICLE

Hba1c levels correlated to lipoprotein-associated phospholipase A2 and monocyte HDL ratio in type 2 diabetes mellitus

Diah Ayu Kusuma , Nyoman Suci Widyastiti, Meita Hendrianingtyas

Diah Ayu Kusuma
Resident in Clinical Pathology Department, Faculty of Medicine, Universitas Diponegoro-Dr. Kariadi Hospital, Semarang, Indonesia. Email: diahayukus@gmail.com

Nyoman Suci Widyastiti
Clinical Pathology Department, Faculty of Medicine, Universitas Diponegoro-Dr. Kariadi Hospital, Semarang, Indonesia

Meita Hendrianingtyas
Clinical Pathology Department, Faculty of Medicine, Universitas Diponegoro-Dr. Kariadi Hospital, Semarang, Indonesia
Online First: April 30, 2021 | Cite this Article
Kusuma, D., Widyastiti, N., Hendrianingtyas, M. 2021. Hba1c levels correlated to lipoprotein-associated phospholipase A2 and monocyte HDL ratio in type 2 diabetes mellitus. Bali Medical Journal 10(1): 382-386. DOI:10.15562/bmj.v10i1.2199


Background: In the last few decades, several hypotheses have been proposed to explain the pathogenesis of type 2 diabetes mellitus (T2DM) that links this disease with a systemic chronic inflammatory state. New predictors of lipoprotein-associated phospholipase A2 (Lp-PLA2) and monocyte HDL-c ratio (MHR) has been observed to predict atherosclerosis severity, progression of atherosclerosis and cardiovascular events. The study aims to evaluate correlation between HbA1c with Lp-PLA2 and MHR in patients with T2DM.

Methods: Analytic observational research with cross sectional design. HbA1c levels were measured by high-pressure liquid chromatography, Lp-PLA2 values using the ELISA method, and MHR values based on the ratio of absolute monocytes to HDL counted manually.

Results: The study was conducted on 42 DMT2 patients aged 34-74 years, mean value HbA1c, Lp-PLA2, and MHR were 8.16±2.10, 217.20±42.49, 10.55±6 11 respectively. Statistical analysis showed a positive correlation between HbA1c  and Lp-PLA2 levels (p=0.046 and r=0.310), and there was a correlation between HbA1c levels and MHR values  (p=0.038 and r=0.321).

Conclusion: A weak positive correlation between glycemic control (HbA1c) and atherosclerotic markers (Lp-PLA2 and MHR) in DMT2 patients.

References

Mihardja L, Soetrisno U, Soegondo S. Prevalence and clinical profile of diabetes mellitus in productive aged urban Indonesians. J Diabetes Investig. 2014;5(5):507-12. doi: 10.1111/jdi.12177.

Marathe PH, Gao HX, Close KL. American Diabetes Association Standards of Medical Care in Diabetes 2017. J Diabetes. 2017;9(4):320-324. doi: 10.1111/1753-0407.12524.

Maron DJ, Grundy SM, R, Pearson P. The Prevention of Coronary Heart Disease. In O'Rourke RA, editor. Hurst's The Heart. 11th ed. New york: Mc.Graw Hill; 2009. p. 1093-105.

Kim MK, Ko SH, Kim BY, Kang ES, Noh J, Kim SK, Park SO, Hur KY, Chon S, Moon MK, Kim NH, Kim SY, Rhee SY, Lee KW, Kim JH, Rhee EJ, Chun S, Yu SH, Kim DJ, Kwon HS, Park KS; Committee of Clinical Practice Guidelines, Korean Diabetes Association. 2019 Clinical Practice Guidelines for Type 2 Diabetes Mellitus in Korea. Diabetes Metab J. 2019;43(4):398-406. doi: 10.4093/dmj.2019.0137.

Pollack RM, Donath MY, LeRoith D, Leibowitz G. Anti-inflammatory Agents in the Treatment of Diabetes and Its Vascular Complications. Diabetes Care. 2016;39 Suppl 2:S244-52. doi: 10.2337/dcS15-3015.

Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, Deftereos S, Tousoulis D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur Cardiol. 2019;14(1):50-59. doi: 10.15420/ecr.2018.33.1.

Lp-PLA(2) Studies Collaboration, Thompson A, Gao P, Orfei L, Watson S, Di Angelantonio E, Kaptoge S, Ballantyne C, Cannon CP, Criqui M, Cushman M, Hofman A, Packard C, Thompson SG, Collins R, Danesh J. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet. 2010;375(9725):1536-44. doi: 10.1016/S0140-6736(10)60319-4.

Cai A, Zheng D, Qiu R, Mai W, Zhou Y. Lipoprotein-associated phospholipase A2 (Lp-PLA(2)): a novel and promising biomarker for cardiovascular risks assessment. Dis Markers. 2013;34(5):323-31. doi: 10.3233/DMA-130976.

de Castro SH, Faria Neto HC, Gomes MB. Platelet-activating factor acetylhydrolase (PAF-AH) activity in patients with type 1 diabetes mellitus. Arq Bras Cardiol. 2007 Feb;88(2):179-84. English, Portuguese. doi: 10.1590/s0066-782x2007000200008.

Moise LG, Marta DS, Raşcu A, Moldoveanu E. Serum Lipoprotein-Associated Phospholipase A2 In Males With Metabolic Syndrome And Obstructive Sleep Apnea. Acta Endocrinol (Buchar). 2018;14(1):36-42. doi: 10.4183/aeb.2018.36. PMID: 31149234

Sanchez J, Vinagre I, Franco E. Effect of improving glycemic control in patients with type 2 diabetes mellitus on low-density lipoprotein size, electronegative low-density lipoprotein and lipoprotein-associated phospholipase A2 distribution. Am J Cardiol. 2012; 1;110(1):67-71.

Li X, Li Wei Q. Clinical Significance of Detection of Lipoprotein Associated Phospholipase A2 in Serum of Patients with Type 2 Diabetes Mellitus. Mod Med Lab J. 2017;32(6):85-88.

Kanbay M, Solak Y, Unal H, Kurt Y, Gok M. Monocyte count/HDL cholesterol ratio and cardiovascular events in patients with chronic kidney disease. Int Urol Nephrol. 2014; 46(8):1619-25.

Ucar FM. A potential marker of bare metal stent restenosis: monocyte count - to- HDL cholesterol ratio. BMC Cardiovasc Disord. 2016;16(1):186.

Karatas A, Turkmen E, Erdem E, Digeroglu H, Kaya Y. Monocyte to high-density lipoprotein cholesterol ratio in patients with diabetes mellitus and diabetic nephropathy. Biomark Med. 2018; 12(9):953-59.

Onalan E. The relationship between monocyte to high-density lipoprotein cholesterol ratio and diabetic nephropathy. Pak J Med Sci. 2019;35(4):1081–86.

WHO. Global Report on Diabetes. [Online]; 2016 [cited 2019 Sep. Available from: http://www.who.int.

Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012 Jul;27(4):269-73. doi: 10.5001/omj.2012.68.

Blair M. Diabetes Mellitus Review. Urol Nurs. 2016;36(1):27-36.

Krhač M, Lovrenčić MV. Update on biomarkers of glycemic control. World J Diabetes. 2019;10(1):1-15. doi: 10.4239/wjd.v10.i1.1.

Pitsavos C, Tampourlou M, Panagiotakos DB, Skoumas Y, Chrysohoou C, Nomikos T, Stefanadis C. Association Between Low-Grade Systemic Inflammation and Type 2 Diabetes Mellitus Among Men and Women from the ATTICA Study. Rev Diabet Stud. 2007;4(2):98-104. doi: 10.1900/RDS.2007.4.98.

Hansson GK. Inflammatory mechanisms in atherosclerosis. J Thromb Haemost. 2009;7 Suppl 1:328-31. doi: 10.1111/j.1538-7836.2009.03416.x.

Packard CJ. Lipoprotein-associated phospholipase A2 as a biomarker of coronary heart disease and a therapeutic target. Curr Opin Cardiol. 2009;24(4):358-63. doi: 10.1097/HCO.0b013e32832bcb22.

Chen CW, Lin CT, Lin YL, Lin TK, Lin CL. Taiwanese female vegetarians have lower lipoprotein-associated phospholipase A2 compared with omnivores. Yonsei Med J. 2011;52(1):13-9. doi: 10.3349/ymj.2011.52.1.13.

Paik JK, Kim M, Kim M, Yen Y, Ahn HY, Lee SH, Lee JH. Circulating Lp-PLA₂ activity correlates with oxidative stress and cytokines in overweight/obese postmenopausal women not using hormone replacement therapy. Age (Dordr). 2015;37(2):32. doi: 10.1007/s11357-015-9770-4.

Hatoum IJ, Hu FB, Nelson JJ, Rimm EB. Lipoprotein-associated phospholipase A2 activity and incident coronary heart disease among men and women with type 2 diabetes. Diabetes. 2010;59(5):1239-43. doi: 10.2337/db09-0730.

Koenig W, Twardella D, Brenner H, Rothenbacher D. Lipoprotein-associated phospholipase A2 predicts future cardiovascular events in patients with coronary heart disease independently of traditional risk factors, markers of inflammation, renal function, and hemodynamic stress. Arterioscler Thromb Vasc Biol. 2006;26(7):1586-93. doi: 10.1161/01.ATV.0000222983.73369.c8.

Manafa P, Nwankwo N, Ekuma-Okereke O, Chukwuma G. Evaluation of Serum Levels of LP-PLA2 and CA-242 in Adult Male Cigarette Smokers in Nnewi Metropolis. J Med Res. 2019;5(1):31-35.

Ohshita K, Yamane K, Hanafusa M, Mori H, Mito K, Okubo M, Hara H, Kohno N. Elevated white blood cell count in subjects with impaired glucose tolerance. Diabetes Care. 2004;27(2):491-6. doi: 10.2337/diacare.27.2.491.

Vozarova B, Weyer C, Lindsay RS, Pratley RE, Bogardus C, Tataranni PA. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002;51(2):455-61. doi: 10.2337/diabetes.51.2.455.

Tong PC, Lee KF, So WY, Ng MH, Chan WB, Lo MK, Chan NN, Chan JC. White blood cell count is associated with macro- and microvascular complications in chinese patients with type 2 diabetes. Diabetes Care. 2004;27(1):216-22. doi: 10.2337/diacare.27.1.216.

Cavalot F, Massucco P, Perna P, Traversa M, Anfossi G, Trovati M. White blood cell count is positively correlated with albumin excretion rate in subjects with type 2 diabetes. Diabetes Care. 2002;25(12):2354-5. doi: 10.2337/diacare.25.12.2354-a.

Kolovou GD, Anagnostopoulou KK, Damaskos DS, Bilianou HI, Mihas C, Milionis HJ, Kostakou PM, Cokkinos DV. Gender differences in the lipid profile of dyslipidemic subjects. Eur J Intern Med. 2009;20(2):145-51. doi: 10.1016/j.ejim.2008.06.011.

Chen JW, Li C, Liu ZH, Shen Y, Ding FH, Shu XY, Zhang RY, Shen WF, Lu L, Wang XQ. The Role of Monocyte to High-Density Lipoprotein Cholesterol Ratio in Prediction of Carotid Intima-Media Thickness in Patients With Type 2 Diabetes. Front Endocrinol (Lausanne). 2019;10:191. doi: 10.3389/fendo.2019.00191.

Wu TT, Zheng YY, Chen Y, Yu ZX, Ma YT, Xie X. Monocyte to high-density lipoprotein cholesterol ratio as long-term prognostic marker in patients with coronary artery disease undergoing percutaneous coronary intervention. Lipids Health Dis. 2019;18(1):180. doi: 10.1186/s12944-019-1116-2.

Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, Groop PH, Handelsman Y, Insel RA, Mathieu C, McElvaine AT, Palmer JP, Pugliese A, Schatz DA, Sosenko JM, Wilding JP, Ratner RE. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes. 2017;66(2):241-255. doi: 10.2337/db16-0806.

Seals DR, Jablonski KL, Donato AJ. Aging and vascular endothelial function in humans. Clin Sci (Lond). 2011;120(9):357-75. doi: 10.1042/CS20100476.

Idzkowska E, Eljaszewicz A, Miklasz P, Musial W, Tycinska A, Moniuszko M. The Role of Different Monocyte Subsets in the Pathogenesis of Atherosclerosis and Acute Coronary Syndromes. Scand J Immunol. 2015;82(3):163-73.

Yang Y, Cui Y, Peng DQ. The role of monocyte phenotype switching in peri-procedural myocardial injury and its involvement in statin therapy. Med Sci Monit. 2013;19:1006-12. doi: 10.12659/MSM.889661.

Ahn N, Kim K. High-density lipoprotein cholesterol (HDL-C) in cardiovascular disease: effect of exercise training. Integr Med Res. 2016;5(3):212-215. doi: 10.1016/j.imr.2016.07.001.

Tosheska Trajkovska K, Topuzovska S. High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol. Anatol J Cardiol. 2017 Aug;18(2):149-154. doi: 10.14744/AnatolJCardiol.2017.7608. PMID: 28766509; PMCID: PMC5731265.

Artha IMJR, Bhargah A, Dharmawan NK, Pande UW, Triyana KA, Mahariski PA, Yuwono J, Bhargah V, Prabawa IPY, Manuaba IBAP, Rina IK. High level of individual lipid profile and lipid ratio as a predictive marker of poor glycemic control in type-2 diabetes mellitus. Vasc Health Risk Manag. 2019;15:149-157. doi: 10.2147/VHRM.S209830.


No Supplementary Material available for this article.
Article Views      : 0
PDF Downloads : 0