Skip to main content Skip to main navigation menu Skip to site footer

The differences of lactate dehydrogenase and activin A levels among thalassemia major and non-thalassemia

  • Ryan Alexander Gunawan ,
  • Nyoman Suci Widyastiti ,
  • Ariosta Ariosta ,
  • Rina Pratiwi ,
  • Dwi Retnoningrum ,
  • Dwi Ngestiningsih ,
  • Yetty Movieta Nency ,


Background: Indonesia is located in the global thalassemia belt region, with major thalassemia prevalence that increase every year. Ineffective erythropoiesis (IE) is a condition that is commonly found in major thalassemia. An increase in lactate dehydrogenase (LDH) level and Activin A level was found in major thalassemia patient, that is caused by ineffective erythropoiesis (IE) and other factors. However until now, there is still no known studies that compare LDH level and Activin A level in major thalassemia and non-thalassemia. The aim of the study is to evaluate difference between LDH level and Activin A level in major thalassemia and non-thalassemia.

Methods: An observational analytical study with cross sectional design was conducted in March – September 2020, which consist of 25 major thalassemia patients in Dr. R. Soedjati Grobogan Public Hospital and Dr. R. Soetrasno Rembang Public Hospital, and 25 healthy population with equivalent age. LDH levels were measured using photometry and Activin A levels were measured using ELISA. Differences between LDH levels and Activin A levels in major thalassemia and non-thalassemia were analyzed using Independent Sample T test, which p < 0.05 was considered significant.

Results: There is a significant difference (p=0.00) between LDH levels in major thalassemia (524.48 ± 167.44 U/L) and non-thalassemia (294.48 ± 131.24 U/L). There is a significant difference (p = 0.04) between Activin A levels in major thalassemia (118.75 ± 45.47 pg/ml) and non-thalassemia (95.66 ± 26.26 pg/ml).

Conclusion: Hypoxia due to IE and the formation of ROS due to repeated transfusions causes an increase in LDH levels and Activin A levels in thalassemia major patients, indicated by a significant difference between LDH levels and Activin A levels in thalassemia major and non-thalassemia.


  1. What is thalassemia? | CDC [Internet]. [cited 2020 Feb 12]. Available from:
  2. Marengo-Rowe AJ. The thalassemias and related disorders. Baylor Univ Med Cent Proc. 2007;20(1):27–31.
  3. Origa R. Beta-thalassemia summary genetic counseling GeneReview scope. 2019. 1–32 p.
  4. Indonesia KKR. Keputusan Menteri Kesehatan Republik Indonesia Nomor HK.01.07 / MENKES / 1 / 2018 tentang pedoman nasional pelayanan kedokteran tata laksana thalassemia. 2018;90.
  5. Ribeil JA, Arlet JB, Dussiot M, Moura IC, Courtois G, Hermine O. Ineffective erythropoiesis in ? -thalassemia. ScientificWorldJournal. 2013;2013:394295. doi: 10.1155/2013/394295.
  6. Mettananda S, Gibbons RJ, Higgs DR. ?-Globin as a molecular target in the treatment of ?-thalassemia. Blood. 2015;125(24):3694–701.
  7. Toren A, Or R, Kapelushnik J, Chividalli G, Aku M, Slavin S, et al. Normalization of serum lactic dehydrogenase in ?-thalassemia patients following bone marrow transplantation. Am J Hematol. 1996;51(2):166–7.
  8. Washington IM, Van Hoosier G. Clinical Biochemistry and Hematology. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. 2012. 57–116 p.
  9. Musharraf SG, Iqbal A, Ansari SH, Parveen S, Khan IA, Siddiqui AJ. ?-thalassemia patients revealed a significant change of untargeted metabolites in comparison to healthy individuals. Sci Rep. 2017;7:1–10.
  10. Mizil O. The correlation between lactate dehydrogenase,creatine kinase and total thiol levels in sera of patients with ?- thalassemia. Natl J Chem. 2010;39:565–70.
  11. He H, Qiao Y, Zhou Q, Wang Z, Chen X, Liu D, Yin D, He M. Iron Overload Damages the Endothelial Mitochondria via the ROS/ADMA/DDAHII/eNOS/NO Pathway. Oxid Med Cell Longev. 2019;2019:2340392. doi: 10.1155/2019/2340392.
  12. Brisset M, Béhin A, Pottier C, Jardel C, Sharshar T, Mochel F, et al. Life-threatening lactic acidosis occurring in adults with mitochondrial disorders. Rev Neurol. 2019;175(9):564–7.
  13. Rivella S. ?-thalassemias: Paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica. 2015;100(4):418–30.
  14. Liang R, Ghaffari S. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease. Br J Haematol. 2016;174(5):661–73.
  15. Dussiot M, Maciel TT, Fricot A, Chartier C, Negre O, Veiga J, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in ?-thalassemia. Nat Med. 2014;20(4):398–407.
  16. Jones JE, Cadena SM, Gong C, Wang X, Chen Z, Wang SX, et al. Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15. Cell Rep. 2018;22(6):1522–30.
  17. Shav H, Tal Y, Zipori D. The Role of Activin A in Regulation of Hemopoiesis. Stem Cells. 2002;20(6):493–500.
  18. Shiozaki M, Kosaka M, Eto Y. Activin A: A commitment factor in erythroid differentiation. Biochem Biophys Res Commun. 1998;242(3):631–5.
  19. Carrancio S, Markovics J, Wong P, Leisten J, Castiglioni P, Groza MC, et al. An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. Br J Haematol. 2014;165(6):870–82.
  20. Rea Oikonomidou P, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? 2019;(1):1–36.
  21. Voskaridou E, Ntanasis-Stathopoulos I, Christoulas D, Dimopoulou M, Komninaka V, Repa K, et al. Activin-A is elevated in patients with thalassemia major and double heterozygous sickle cell/beta-thalassemia and correlates with markers of hemolysis and bone mineral density. Ann Hematol. 2019;98(7):1583–92.
  22. Camaschella C, Nai A. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. Br J Haematol. 2016;172(4):512–23.
  23. Bashir M, Damineni S, Mukherjee G, Kondaiah P. Activin-a signaling promotes epithelial–mesenchymal transition, invasion, and metastatic growth of breast cancer. Npj Breast Cancer. 2015;1:1–13.
  24. Mokhtar GM, Adly AAM, Alfy MSE, Tawfik LM, Khairy AT. N-terminal natriuretic peptide and ventilation-perfusion lung scan in sickle cell disease and thalassemia patients with pulmonary hypertension. Hemoglobin. 2010;34(1):78–94.
  25. Kato GJ, McGowan V, Machado RF, Little JA, Taylor 6th J, Morris CR, et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood. 2006;107(6):2279–85.
  26. Rivella S. Iron metabolism under conditions of ineffective erythropoiesis in ?-Thalassemia. Blood. 2019;133(1):51–8.
  27. Gabrial SGN, Shakib MCR, Gabrial GN. Protective role of vitamin c intake on muscle damage in male adolescents performing strenuous physical activity. Open Access Maced J Med Sci. 2018;6(9):1594–8.
  28. Elliott HC. Effects of vitamin C loading on serum constituents in man (41358). Proc Soc Exp Biol Med. 1982;169(3):363–7.
  29. Imaki M, Miyoshi T, Yoshimura T, Tanada S, Matsumoto K. Relationship between the activity of serum lactate dehydrogenase(LDH) and serum vitamin C in Japanese men and women in their middle and old age. J Japanese Assoc Rural Med. 1988;37(2):87–91.
  30. Sepulveda J. Challenges in routine clinical chemistry analysis. Proteins and enzymes. [Internet]. First Edit. Accurate Results in the Clinical Laboratory: A Guide to Error Detection and Correction. Elsevier Inc.; 2013. 131–148.
  31. Acierno SP, Aguayo P, Albanese CT, Algren DA, Alon US, Alonso MH, et al. Ashcraft’s pediatric surgery 5th edition. In: Holcomb GW, Murphy JP, Ostlie DJBT-APS (Fifth E, editors. Philadelphia: W.B. Saunders; 2010. p. v–xiv. Available from:
  32. Evans R. Illustrated orthopedic physical assessment, 3rd edition. Elsevier. 2009. 1200 p.
  33. Rodrigues BM, Dantas E, de Salles BF, Miranda H, Koch AJ, Willardson JM, Simão R. Creatine kinase and lactate dehydrogenase responses after upper-body resistance exercise with different rest intervals. J Strength Cond Res. 2010;24(6):1657-62. doi: 10.1519/JSC.0b013e3181d8e6b1.
  34. Grytczuk A, Gruszewska E, Panasiuk A, Cylwik B, Chrostek L. Serum profile of lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) in alcoholic liver diseases. 2020. DOI: 10.21203/
  35. Harada K, Shintani Y, Sakamoto Y, Wakatsuki M, Shitsukawa K, Saito S. Serum immunoreactive activin A levels in normal subjects and patients with various diseases. J Clin Endocrinol Metab. 1996;81(6):2125-30. doi: 10.1210/jcem.81.6.8964839.
  36. Baccarelli A, Morpurgo PS, Corsi A, Vaghi I, Fanelli M, Cremonesi G, et al. Activin A serum levels and aging of the pituitary-gonadal axis: A cross-sectional study in middle-aged and elderly healthy subjects. Exp Gerontol. 2001;36(8):1403–12.
  37. Refaat B. Role of activins in embryo implantation and diagnosis of ectopic pregnancy: A review. Reprod Biol Endocrinol. 2014;12(1):1–8.
  38. Muttukrishna S, Jauniaux E, Greenwold N, McGarrigle H, Jivraj S, Carter S, et al. Circulating levels of inhibin A, activin A and follistatin in missed and recurrent miscarriages. Hum Reprod. 2002;17(12):3072–8.
  39. Luisi S, Florio P, D’Antona D, Severi FM, Sanseverino F, Danero S, et al. Maternal serum inhibin A levels are a marker of a viable trophoblast in incomplete and complete miscarriage. Eur J Endocrinol. 2003;148(2):233–6.
  40. Florio P, Luisi S, Ciarmela P, Severi FM, Bocchi C, Petraglia F. Inhibins and activins in pregnancy. Mol Cell Endocrinol. 2004;225(1–2):93–100.

How to Cite

Gunawan, R. A., Widyastiti, N. S., Ariosta, A., Pratiwi, R., Retnoningrum, D., Ngestiningsih, D., & Nency, Y. M. (2021). The differences of lactate dehydrogenase and activin A levels among thalassemia major and non-thalassemia. Bali Medical Journal, 10(3), 996–1001.




Search Panel

Ryan Alexander Gunawan
Google Scholar
BMJ Journal

Nyoman Suci Widyastiti
Google Scholar
BMJ Journal

Ariosta Ariosta
Google Scholar
BMJ Journal

Rina Pratiwi
Google Scholar
BMJ Journal

Dwi Retnoningrum
Google Scholar
BMJ Journal

Dwi Ngestiningsih
Google Scholar
BMJ Journal

Yetty Movieta Nency
Google Scholar
BMJ Journal