Skip to main content Skip to main navigation menu Skip to site footer

Dual role of Cutibacterium acnes in acne vulgaris pathophysiology

  • Prasetyadi Mawardi ,
  • Irene Ardiani ,
  • Pratiwi Prasetya Primisawitri ,
  • Adniana Nareswari ,

Abstract

Acne vulgaris (AV) is the most common and multifactorial skin disease in adolescents affecting the pilosebaceous unit that involves hormonal imbalance, increased sebum production, and bacterial colonization, which causes both physical and psychological disorders. Cutibacterium acnes is considered one of the key contributing factors even though many Cutibacterium acnes colonies are on healthy skin. Cutibacterium acnes induces lipogenesis and production of sebum. Through its production of porphyrins, it may act as a catalytic agent in squalene oxidation that is comedogenic, thus aggravating comedogenesis. We review the dual role of Cutibacterium acnes to provide an understanding of the pathophysiology of acne vulgaris.

References

  1. Bowe Whitney P and Shalita Alan R. Introduction: epidemiology, cost, and psychosocial implications. In: shalita Alan R, Del Rosso james Q, Guy Webster F, editor. Acne Vulgaris. 1st editio. London UK: Informa Healthcare USA, Inc; 2011. p. 1–3.
  2. Mawardi P. The Role of Psychodermatology in Acne Vulgaris Pathophysiology. Arch Epidemiol. 2018;2(1):1–5.
  3. Lynn D, Umari T, Dellavalle R, Dunnick C. The epidemiology of acne vulgaris in late adolescence. Adolesc Health Med Ther. 2016;13.
  4. Schäfer T, Nienhaus A, Vieluf D, et al. Epidemiology of acne in the general population: The risk of smoking. Br J Dermatol. 2001;145(1):100–4.
  5. Friedlander SF, Eichenfield LF, Fowler JF, Fried RG, Levy ML, Webster GF. Acne epidemiology and pathophysiology. Semin Cutan Med Surg [Internet]. 2010;29(2 Suppl 1):2–4. Available from: http://dx.doi.org/10.1016/j.sder.2010.04.002
  6. Collier CN, Harper JC, Cantrell WC, Wang W, Foster KW, Elewski BE. The prevalence of acne in adults 20 years and older. J Am Acad Dermatol. 2008;58(1):56–9.
  7. O’Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome. 2018;6(1):1–16.
  8. Spittaels KJ, Ongena R, Zouboulis CC, Crabbé A, Coenye T. Cutibacterium acnes Phylotype I and II Strains Interact Differently With Human Skin Cells. Front Cell Infect Microbiol. 2020;10:1–11.
  9. Heughebaert C and Shalita AR. Comedogenesis. In: Shalita AR, Del Rosso JQ WG, editor. Acne Vulgaris. 1st ed. Informa Healthcare; 2011. p. 28–40.
  10. Zouboulis CC, Picardo M, Ju Q, Kurokawa I, Törőcsik D, Bíró T, et al. Beyond acne: Current aspects of sebaceous gland biology and function. Rev Endocr Metab Disord. 2016;17(3):319–34.
  11. Fischer H, Fumicz J, Rossiter H, Napirei M, Buchberger M, Tschachler E, et al. Holocrine Secretion of Sebum Is a Unique DNase2-Dependent Mode of Programmed Cell Death. J Invest Dermatol [Internet]. 2017;137(3):587–94. Available from: http://dx.doi.org/10.1016/j.jid.2016.10.017
  12. Stewart ME. Sebaceous gland lipids. Semin Dermatol. 1992;11(2):100–5.
  13. Pappas A, Anthonavage M, Gordon JS. Metabolic fate and selective utilization of major fatty acids in human sebaceous gland. J Invest Dermatol. 2002;118(1):164–71.
  14. Schmid-Wendtner MH, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol. 2006;19(6):296–302.
  15. De Luca C, Valacchi G. Surface lipids as multifunctional mediators of skin responses to environmental stimuli. Mediators Inflamm. 2010;2010.
  16. Pham DM, Boussouira B, Moyal D, Nguyen QL. Oxidization of squalene, a human skin lipid: a new and reliable marker of environmental pollution studies. Int J Cosmet Sci. 2015;37(4):357–65.
  17. Zouboulis CC, Böhm M. Neuroendocrine regulation of sebocytes - A pathogenetic link between stress and acne. Exp Dermatology, Suppl. 2004;13(4):31–5.
  18. Grice EA. The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Science (80- ). 2009;33(2):98–103.
  19. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol [Internet]. 2018;16(3):143–55. Available from: http://dx.doi.org/10.1038/nrmicro.2017.157
  20. Xu H, Li H. Acne, the Skin Microbiome, and Antibiotic Treatment. Am J Clin Dermatol [Internet]. 2019;20(3):335–44. Available from: https://doi.org/10.1007/s40257-018-00417-3
  21. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science [Internet]. 2009;324(5931):1190–2. Available from: http://www.sciencemag.org.libproxy.mit.edu/content/324/5931/1190.full
  22. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature [Internet]. 2013;498(7454):367–70. Available from: http://dx.doi.org/10.1038/nature12171
  23. Suer K, Güvenir M. Propionibacterium acnes (Cutibacterium acnes) and Acne Vulgaris: The Latest Updates of Antimicrobial Activity. Turkish J Dermatology. 2019;13(2):57.
  24. Scholz CFP, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus propionibacterium to the proposed novel genera acidipropionibacterium gen. Nov., cutibacterium gen. nov. and pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016;66(11):4422–32.
  25. Patrick S and McDowell A. Propionibacterium acnes: an emerging pathogen in biomaterial-associated infection. In: Moriarty TF, Sebastian AJ Zaat, Henk J Busscher, editor. Biomaterials associated infection: immunological aspects and antimicrobial strategies. Springer Science and Business Media; 2013. p. 87–105.
  26. McGinley KJ, Webster GF, Leyden JJ. Regional variations of cutaneous propionibacteria. Appl Environ Microbiol. 1978;35(1):62–6.
  27. Cogen AL, Nizet V, Gallo RL. FROM BENCH TO BEDSIDE Skin microbiota : a source of disease or defence ? Br J Dermatol. 2008;158:442–55.
  28. Linfante A, Allawh RM, Allen HB. The Role of Propionibacterium acnes Biofilm in Acne Vulgaris. J Clin Exp Dermatol Res. 2017;09(01):2–5.
  29. JoÅ„czyk-Matysiak E, Weber-Dabrowska B, Zaczek M, Miedzybrodzki R, Letkiewicz S, Åusiak-Szelchowska M, et al. Prospects of phage application in the treatment of acne caused by Propionibacterium acnes. Front Microbiol. 2017;8(FEB):1–11.
  30. McDowell A, Nagy I, Magyari M, Barnard E, Patrick S. The Opportunistic Pathogen Propionibacterium acnes: Insights into Typing, Human Disease, Clonal Diversification and CAMP Factor Evolution. PLoS One. 2013;8(9).
  31. Corvec S, Dagnelie MA, Khammari A, Dréno B. Taxonomy and phylogeny of Cutibacterium (formerly Propionibacterium) acnes in inflammatory skin diseases. Ann Dermatol Venereol [Internet]. 2019;146(1):26–30. Available from: https://doi.org/10.1016/j.annder.2018.11.002
  32. Mourelatos K, Eady EA, Cunliffe WJ, Clark SM, Cove JH. Temporal changes in sebum excretion and propionibacterial colonization in preadolescent children with and without acne. Br J Dermatol. 2007;156(1):22–31.
  33. Iinuma K, Sato T, Akimoto N, Noguchi N, Sasatsu M, Nishijima S, et al. Involvement of propionibacterium acnes in the augmentation of lipogenesis in hamster sebaceous glands in vivo and in vitro. J Invest Dermatol [Internet]. 2009;129(9):2113–9. Available from: http://dx.doi.org/10.1038/jid.2009.46
  34. Burkhart CG, Burkhart CN. Expanding the microcomedone theory and acne therapeutics: Propionibacterium acnes biofilm produces biological glue that holds corneocytes together to form plug. J Am Acad Dermatol. 2007;57(4):722–4.
  35. Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai L, McDowell A, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 2006;8(8):2195–205.
  36. Chronnell CMT, Ghali LR, Ali RS, Quinn AG, Holland DB, Bull JJ, et al. Human β defensin-1 and -2 expression in human pilosebaceous units: Upregulation in acne vulgaris lesions. J Invest Dermatol. 2001;117(5):1120–5.
  37. Gudjonsson JE and Modlin RL. Cellular Components of the Cutaneous Immune System. In: Kang S, Amagai M, Bruckner AL, H Enk A, Margolis DJ, McMichael AJ O, editor. Fitzpatrick’s Dermatology. 9th ed. New York: McGraw Hill; 2019. p. 143–58.
  38. Krishna S KC and KJ. Innate immunity in the pathogenesis of acne vulgaris. In: Shalita AR, Del Rosso JQ WG, editor. Acne vulgaris. 1st ed. London: Informa Healthcare; 2011. p. 12–27.
  39. Timár KK, Junnikkala S, Dallos A, Jarva H, Bhuiyan ZA, Meri S, et al. Human keratinocytes produce the complement inhibitor factor I: Synthesis is regulated by interferon-γ. Mol Immunol. 2007;44(11):2943–9.
  40. Giang J, Seelen MAJ, van Doorn MBA, Rissmann R, Prens EP, Damman J. Complement activation in inflammatory skin diseases. Front Immunol. 2018;9(APR):1–17.
  41. Scott DG, Cunliffe WJ GG. Activation of complement—a mechanism for the inflammation in acne. Br J Dermatol. 1979;101(3):315–20.
  42. Webster GF, Leyden JJ NU. Complement activation in acne vulgaris: Consumption of complement by comedones. Infect Immun. 1979;26(1):183–6.
  43. Tanghetti EA. The role of inflammation in the pathology of acne. J Clin Aesthet Dermatol. 2013;6(9):27–35.
  44. Do TT, Zarkhin S, Jeffrey SO, et al. Computer-assisted alignment and tracking of acne lesions indicate that most inflammatory lesions arise from comedones and de novo. J Am Acad Dermatol. 2008;58(4):603–8.
  45. Holland DB, Jeremy AHT. The role of inflammation in the pathogenesis of acne and acne scarring. Semin Cutan Med Surg. 2005;24(2):79–83.
  46. Cappel M, Mauger D, Thiboutot D. Correlation between serum levels of insulin-like growth factor 1, dehydroepiandrosterone sulfate, and dihydrotestosterone and acne lesion counts in adult women. Arch Dermatol. 2005;141(3):333–8.
  47. Kim J, Ochoa M-T, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, et al. Activation of Toll-Like Receptor 2 in Acne Triggers Inflammatory Cytokine Responses. J Immunol. 2002;169(3):1535–41.
  48. Heymann WR. Toll-like receptors in acne vulgaris. J Am Acad Dermatol. 2006;55(4):691–2.
  49. McInturff JE, Modlin RL, Kim J. The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol [Internet]. 2005;125(1):1–8. Available from: http://dx.doi.org/10.1111/j.0022-202X.2004.23459.x
  50. Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA, et al. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science (80- ). 2001;291(5508):1544–7.

How to Cite

Mawardi, P., Ardiani, I., Primisawitri, P. P., & Nareswari, A. (2021). Dual role of Cutibacterium acnes in acne vulgaris pathophysiology. Bali Medical Journal, 10(2), 486–490. https://doi.org/10.15562/bmj.v10i2.2358

HTML
1

Total
15

Share

Search Panel

Prasetyadi Mawardi
Google Scholar
Pubmed
BMJ Journal


Irene Ardiani
Google Scholar
Pubmed
BMJ Journal


Pratiwi Prasetya Primisawitri
Google Scholar
Pubmed
BMJ Journal


Adniana Nareswari
Google Scholar
Pubmed
BMJ Journal