Mapping the prevalence of dengue fever in sragen regency Indonesia

Agus Sudaryanto , Ulfiana Savira Ainnurriza, Supratman Supratman, Shinta Kurnia Dewi

Agus Sudaryanto
Department of Community Nursing Faculty of Health Science, Universitas Muhammadiyah Surakarta, Indonesia. Email: agus_sudaryanto@ums.ac.id

Ulfiana Savira Ainnurriza
Department of Nursing Faculty of Health Science, Universitas Muhammadiyah Surakarta, Indonesia

Supratman Supratman
Department of Community Nursing Faculty of Health Science, Universitas Muhammadiyah Surakarta, Indonesia

Shinta Kurnia Dewi
Department of Nursing Faculty of Health Science, Universitas Muhammadiyah Surakarta, Indonesia
Online First: December 30, 2021 | Cite this Article
Sudaryanto, A., Ainnurriza, U., Supratman, S., Dewi, S. 2021. Mapping the prevalence of dengue fever in sragen regency Indonesia. Bali Medical Journal 10(3): 1107-1110. DOI:10.15562/bmj.v10i3.2821

Introduction: Dengue fever is a disease that is transmitted by vectors. The intermediary vector for dengue fever transmission is the Aedes Aegepty mosquito. Dengue fever cases occur in almost all districts in Indonesia, including the Sragen regency. From 2016 to 2019, the incidence of dengue fever was higher than the previous year. This unusual condition needs to be further monitored and studied. This study's purpose was to map the prevalence of dengue fever in the Sragen regency.

Methods: A retrospective research design was performed using secondary data provided by the regency health office and the Central Bureau of statistics from the government of Sragen regency. A free and open-source software, namely Quantum Geographic Information System (QGIS), was utilized to produce maps and spatial figures. The results of this study are presented by map and prevalence.

Results: The incidence of dengue fever in the Sragen regency in 2017-2019 fluctuated between 15.83 per 100,000 population and 33.54 per 100,000 population. The dengue fever case in Gemolong district is the highest in 2018 and 2019.

Conclusion: The conclusion for this research is mapping the dengue fever prevalence helping to figure up the spatial pattern of the disease in Sragen regency.


Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453–65. Available from: http://dx.doi.org/10.1016/s0140-6736(14)60572-9

Khetarpal N, Khanna I. Dengue Fever: Causes, Complications, and Vaccine Strategies. J Immunol Res. 2016/07/20. 2016;2016:6803098. Available from: https://pubmed.ncbi.nlm.nih.gov/27525287

Moi ML, Takasaki T. [Dengue Fever]. Rinsho Byori. 2016;64(9):1033–43.

Rahman KM, Sharker Y, Rumi RA, Khan M-UI, Shomik MS, Rahman MW, et al. An Association between Rainy Days with Clinical Dengue Fever in Dhaka, Bangladesh: Findings from a Hospital Based Study. Int J Environ Res Public Health. 2020;17(24):9506. Available from: https://pubmed.ncbi.nlm.nih.gov/33353025

Nadjib M, Setiawan E, Putri S, Nealon J, Beucher S, Hadinegoro SR, et al. Economic burden of dengue in Indonesia. PLoS Negl Trop Dis. 2019;13(1):e0007038–e0007038. Available from: https://pubmed.ncbi.nlm.nih.gov/30629593

Zambrano LI, Rodriguez E, Espinoza-Salvado IA, Fuentes-Barahona IC, Lyra de Oliveira T, Luciano da Veiga G, et al. Spatial distribution of dengue in Honduras during 2016–2019 using a geographic information systems (GIS)–Dengue epidemic implications for public health and travel medicine. Travel Med Infect Dis. 2019;32:101517. Available from: http://dx.doi.org/10.1016/j.tmaid.2019.101517

Hamer D, Lichtveld M. Spatial Distribution of Epidemiological Cases of Dengue Fever in Suriname, 2001-2012. West Indian Med J. 2015/05/01. 2015;64(4):344–50. Available from: https://pubmed.ncbi.nlm.nih.gov/26624585

Shaw N, McGuire S. Understanding the use of geographical information systems (GIS) in health informatics research: A review. J Innov Heal Informatics. 2017;24(2):228. Available from: http://dx.doi.org/10.14236/jhi.v24i2.940

Kaewpitoon SJ, Rujirakul R, Joosiri A, Jantakate S, Sangkudloa A, Kaewthani S, et al. GIS Database and Google Map of the Population at Risk of Cholangiocarcinoma in Mueang Yang District, Nakhon Ratchasima Province of Thailand. Asian Pacific J Cancer Prev. 2016;17(3):1293–7. Available from: http://dx.doi.org/10.7314/apjcp.2016.17.3.1293

Paiva Júnior EF de, Vaz T da S, Rosa M, Garcia ILBE. Automatic stratification of priority areas for Dengue control using the QGIS Model Builder in multicriteria analysis. Epidemiol e Serv saude Rev do Sist Unico Saude do Bras. 2020;29(2):e2019028.

Romero Canal M, da Silva Ferreira ER, Estofolete CF, Martiniano Dias A, Tukasan C, Bertoque AC, et al. Spatiotemporal-based clusters as a method for dengue surveillance. Rev Panam Salud Publica. 2017;41:e162–e162. Available from: https://pubmed.ncbi.nlm.nih.gov/31384275

Astuti EP, Dhewantara PW, Prasetyowati H, Ipa M, Herawati C, Hendrayana K. Paediatric dengue infection in Cirebon, Indonesia: a temporal and spatial analysis of notified dengue incidence to inform surveillance. Parasit Vectors. 2019;12(1):186. Available from: https://pubmed.ncbi.nlm.nih.gov/31036062

Raafat N, Blacksell SD, Maude RJ. A review of dengue diagnostics and implications for surveillance and control. Trans R Soc Trop Med Hyg. 2019;113(11):653–60. Available from: https://pubmed.ncbi.nlm.nih.gov/31365115

Phanitchat T, Zhao B, Haque U, Pientong C, Ekalaksananan T, Aromseree S, et al. Spatial and temporal patterns of dengue incidence in northeastern Thailand 2006-2016. BMC Infect Dis. 2019;19(1):743. Available from: https://pubmed.ncbi.nlm.nih.gov/31443630

Livina A, Rotty LWA, Panda L. Hubungan Trombositopenia Dan Hematokrit Dengan Manifestasi Perdarahan Pada Penderita Demam Dengue Dan Demam Berdarah Dengue. e-CliniC. 2014;2(1):1–8.

Yue Y, Liu X, Ren D, Wu H, Liu Q. Spatial Dynamics of Dengue Fever in Mainland China, 2019. Int J Environ Res Public Health. 2021;18(6):2855. Available from: https://pubmed.ncbi.nlm.nih.gov/33799640

Shafique M, Lopes S, Doum D, Keo V, Sokha L, Sam B, et al. Implementation of guppy fish (Poecilia reticulata), and a novel larvicide (Pyriproxyfen) product (Sumilarv 2MR) for dengue control in Cambodia: A qualitative study of acceptability, sustainability and community engagement. PLoS Negl Trop Dis. 2019;13(11):e0007907–e0007907. Available from: https://pubmed.ncbi.nlm.nih.gov/31738759

Jain R, Sontisirikit S, Iamsirithaworn S, Prendinger H. Prediction of dengue outbreaks based on disease surveillance, meteorological and socio-economic data. BMC Infect Dis. 2019;19(1):272. Available from: https://pubmed.ncbi.nlm.nih.gov/30898092

Article Views      : 0
PDF Downloads : 0