Skip to main content Skip to main navigation menu Skip to site footer

Blockchain integration for hospital information system management

  • Naufal Adi Satrio ,
  • Sritrusta Sukaridhoto ,
  • M. Udin Harun Al Rasyid ,
  • Rizqi Putri Nourma Budiarti ,
  • Ilham Achmad Al-Hafidz ,
  • Evianita Dewi Fajrianti ,


Introduction: A lot of hospital management systems, especially open-source ones, still lack interoperability which is holding back the effectiveness of administration. This happens due to different regulations from hospital organizations. Therefore, there must be a system that facilitates interoperability. Blockchain is a decentralized ledger system, to insert the data from the blockchain all parties must agree that the data is valid thus the data can be inserted so, all the data are immutable thus every change can be audited.

Methods: We integrate the Hyperledger fabric network, an open-source modular blockchain platform, into an open-source hospital management system, openEMR. We take the changed data using debezium connect and Kafka and inserted it into the blockchain.

Results: Based on our test, we managed to get average read latency at 27ms, average read throughput at 36 Read per Second, average transaction latency at 45ms, average transaction throughput at 22 Transaction per Second, and average integrated system data transfer at 111.36ms.

Conclusions: All services deployed successfully at the Kubernetes without any error. All services work as they should be. One service can integrate through the internal network of the Kubernetes and from the outside cluster using ingress. OpenEMR can be used normally as indicated in the official documentation and the data change is stored in the blockchain.


  1. Kementrian Kesehatan RI, Peraturan Menteri Kesehatan RI Nomor 82 tentang Sistem Informasi Manajemen Rumah Sakit.
  2. Oyeyemi, P. Scott, Interoperability in health and social care: organisational issues are the biggest challenge, BMJ Health & Care Informatics 25 (3) (2018) 196–197. doi:10.14236/jhi.v25i3.1024.
  3. URL v25i3.1024
  4. S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Decentralized Business Review (2008) 21260.
  5. S. Aggarwal, N. Kumar, Chapter sixteen hyperledger working model., in: S. Aggarwal, N. Kumar, P. Raj (Eds.), The Blockchain Technology for Secure and Smart Applications across Industry Verticals, Vol. 121 of Advances in Computers, Elsevier, 2021, pp. 323–343. doi:
  6. URL S0065245820300711
  7. X. Larrucea, I. Santamaria, R. Colomo-Palacios, C. Ebert, Microservices, IEEE Software 35 (3) (2018) 96–100. doi:10.1109/MS.2018.2141030.
  8. A. Roehrs, C. A. da Costa, R. da Rosa Righi, Omniphr: A distributed architecture model to integrate personal health records, Journal of Biomedical Informatics 71 (2017) 70–81. doi:
  9. URL S1532046417301089
  10. H. Lycklama `a Nijeholt, J. Oudejans, Z. Erkin, Decreg: A framework for preventing double-financing using blockchain technology, in: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts, BCC ’17, Association for Computing Machinery, New York, NY, USA, 2017, p. 29–34. doi:10.1145/3055518.3055529.
  11. URL
  12. A. Fujihara, Powap: Proof of work at proximity for a crowdsensing system for collaborative traffic information gathering, Internet of Things 10 (2020) 100046, special Issue of the Elsevier IoT Journal on Blockchain Applications in IoT Environments. doi:
  13. URL S254266051830177X
  14. Z. Wei-guo, M. Xi-lin, Z. Jin-zhong, Research on kubernetes’ resource scheduling scheme, ICCNS 2018, Association for Computing Machinery, New York, NY, USA, 2018. doi:10.1145/3290480.3290507.
  15. URL
  16. Y. Huang, K. cai, R. Zong, Y. Mao, Design and implementation of an edge computing platform architecture using docker and kubernetes for machine learning, HP3C ’19, Association for Computing Machinery, New York, NY, USA, 2019. doi:10.1145/3318265.3318288.
  17. URL
  18. L. A. Vayghan, M. A. Saied, M. Toeroe, F. Khendek, Kubernetes as an availability manager for microservice applications, arXiv preprint arXiv:1901.04946.
  19. Strimzi, Using Strimzi (0.26.0).
  20. URL
  21. Hyperledger Performance and Scale Working Group, Hyperledger Blockchain Performance Metrics.
  22. M. George, A. Mary Chacko, MediTrans—Patient-centric interoperability through blockchain, International Journal of Network Management doi:10.1002/nem.2187.
  23. URL
  24. Mondal S, Shafi M, Gupta S, Gupta SK. Blockchain Based Secure Architecture for Electronic Healthcare Record Management. GMSARN Int J. 2022;16(4):413–26.
  25. Dewi LP, Noertjahyana A, Palit HN, Yedutun K. Server Scalability Using Kubernetes. 2019 4th Technol Innov Manag Eng Sci Int Conf. 2019;1–4.

How to Cite

Naufal Adi Satrio, Sritrusta Sukaridhoto, M. Udin Harun Al Rasyid, Rizqi Putri Nourma Budiarti, Ilham Achmad Al-Hafidz, & Evianita Dewi Fajrianti. (2022). Blockchain integration for hospital information system management. Bali Medical Journal, 11(3), 1195–1201.




Search Panel

Naufal Adi Satrio
Google Scholar
BMJ Journal

Sritrusta Sukaridhoto
Google Scholar
BMJ Journal

M. Udin Harun Al Rasyid
Google Scholar
BMJ Journal

Rizqi Putri Nourma Budiarti
Google Scholar
BMJ Journal

Ilham Achmad Al-Hafidz
Google Scholar
BMJ Journal

Evianita Dewi Fajrianti
Google Scholar
BMJ Journal