Skip to main content Skip to main navigation menu Skip to site footer

Ultrasound assessment of femoral cartilage thickness among healthy Indonesian adults

  • Rita Vivera Pane ,
  • Aisyah ,
  • Hajar Ariani ,
  • Erwien Isparnadi ,
  • Aufar Zimamuz Zaman Al Hajiri ,
  • Albert Setiawan ,


Background: Ultrasound (US) is a reliable, non-invasive, and inexpensive modality for evaluating femoral cartilage (FC) thickness. Several studies evaluated the US accuracy in assessing FC thickness by comparing it to MRI and macroscopic measurements, reporting that the US exhibit highly accurate FC thickness measurement. This study evaluated the FC thickness among healthy Indonesian adults using ultrasound US assessment.

Methods: An analytical observational study with a cross-sectional design was conducted in Surabaya Hajj General Hospital, Indonesia, from April to August 2022. A total of 127 participants with no symptoms or pathologies on both knees were involved in the study. In this study, a certified examiner performed the ultrasound scanning in three sites: medial condyle (MC), intercondylar (IC), and lateral condyle (LC) of both knees.

Results: A total of 254 knees from 127 healthy Indonesian adults were examined. The participants’ mean age was 32.83 years. Most of them were female (69%). Participants’ average weight, height, and BMI were 62.25 kg, 161.17 cm, and 23.93, respectively. The mean FC thickness of the right MC, IC, and LC was 1.76 mm, 1.92 mm, and 1.71 mm, respectively. Meanwhile, the mean FC thickness of left MC, IC, and LC was 1.76 mm, 1.89 mm, and 1.69 mm, respectively. This study found that FC thickness was associated with gender (<0.05) but not age and BMI.

Conclusion: Mean FC thickness among healthy Indonesian adults of MC, IC, and LC were 1.76 mm, 1.89 –1.92 mm, and 1.69 – 1.71 mm, respectively. The IC mean was higher than the MC and LC means. Mean FC thickness on both sides was associated with gender but not age and BMI.


  1. Oo WM, Bo MT. Role of Ultrasonography in Knee Osteoarthritis. J Clin Rheumatol. 2016;22(6):324-329. doi:10.1097/RHU.0000000000000436.
  2. Kauppinen K, Casula V, Zbýň Š, Blanco Sequeiros R, Saarakkala SS, Nevalainen MT. Ultrasonographic Assessment of the Normal Femoral Articular Cartilage of the Knee Joint: Comparison with 3D MRI. ScientificWorldJournal. 2021;2021:9978819. Published 2021 Aug 18. doi:10.1155/2021/9978819.
  3. Pradsgaard DØ, Fiirgaard B, Spannow AH, Heuck C, Herlin T. Cartilage thickness of the knee joint in juvenile idiopathic arthritis: comparative assessment by ultrasonography and magnetic resonance imaging. J Rheumatol. 2015;42(3):534-540. doi:10.3899/jrheum.140162.
  4. Babayeva N, Dönmez G, Özçakar L, et al. Mean femoral cartilage thickness is higher in athletes as compared with sedentary individuals. Knee Surg Sports Traumatol Arthrosc. 2021;29(4):1206-1214. doi:10.1007/s00167-020-06146-7.
  5. Aghaghazvini L, Tahmasebi MN, Gerami R, et al. Sonography: a sensitive and specific method for detecting trochlear cartilage pathologies. J Ultrasound. 2020;23(3):259-263. doi:10.1007/s40477-020-00488-1.
  6. Harkey MS, Michel N, Kuenze C, et al. Validating a Semi-Automated Technique for Segmenting Femoral Articular Cartilage on Ultrasound Images. Cartilage. 2022;13(2):19476035221093069. doi:10.1177/19476035221093069.
  7. Saito M, Ito H, Okahata A, et al. Ultrasonographic Changes of the Knee Joint Reflect Symptoms of Early Knee Osteoarthritis in General Population; The Nagahama Study. Cartilage. 2022;13(1):19476035221077403. doi:10.1177/19476035221077403.
  8. Kim HS, Kim HR, Kim BY, et al. Standardized, musculoskeletal ultrasonographic reference values for healthy Korean adults. Korean J Intern Med. 2019;34(6):1372-1380. doi:10.3904/kjim.2016.397.
  9. Bedewi MA, Elsifey AA, Naguib MF, et al. Sonographic assessment of femoral cartilage thickness in healthy adults. J Int Med Res. 2020;48(8):300060520948754. doi:10.1177/0300060520948754.
  10. Özçakar L, Tunç H, Öken Ö, et al. Femoral cartilage thickness measurements in healthy individuals: learning, practicing and publishing with TURK-MUSCULUS. J Back Musculoskelet Rehabil. 2014;27(2):117-124. doi:10.3233/BMR-130441.
  11. Octavius GS, br. Pardede CS, Thandy CC, Lie Fisca CA, Juliansen A. Comparison of Indonesian Growth Reference Chart and World Health Organization Child Growth Standard in Detecting Stunting: A Systematic Review and Meta-analysis of 15,874 Children. J Clin Res Pediatr Endocrinol. 2022;14(1):96-101. doi:10.4274/jcrpe.galenos.2021.2021-8-12.
  12. Pontoh LA, Rahyussalim AJ, Widodo W, Fiolin J, Rhatomy S. Anthropometric study as a predictor of anterior cruciate ligament sizes in Asian Indonesian population. Journal of Orthopaedic Surgery. 2021;29(1). doi:10.1177/23094990211000462.
  13. Rumapea F, Fadlyana E, Dhamayanti M, Tarigan R, Rahmayani R, Rusmil K. Height Prediction Using the Knee Height Measurement Among Indonesian Children. Food Nutr Bull. 2021;42(2):247-258. doi:10.1177/03795721211002067.
  14. Sidharthan S, Yau A, Almeida BA, et al. Patterns of Articular Cartilage Thickness in Pediatric and Adolescent Knees: A Magnetic Resonance Imaging-Based Study. Arthrosc Sports Med Rehabil. 2021;3(2):e381-e390. Published 2021 Feb 2. doi:10.1016/j.asmr.2020.09.029.
  15. Kumar D, Souza RB, Subburaj K, et al. Are There Sex Differences in Knee Cartilage Composition and Walking Mechanics in Healthy and Osteoarthritis Populations?. Clin Orthop Relat Res. 2015;473(8):2548-2558. doi:10.1007/s11999-015-4212-2.
  16. Roberts HM, Moore JP, Thom JM. The Reliability of Suprapatellar Transverse Sonographic Assessment of Femoral Trochlear Cartilage Thickness in Healthy Adults. J Ultrasound Med. 2019;38(4):935-946. doi:10.1002/jum.14775.
  17. Herrera H GA, Llinás PJ, Flórez L, et al. Ultrasound measurement of femoral cartilage thickness in the knee of healthy young university students. Medición ecográfica del grosor del cartílago femoral en rodilla de jóvenes universitarios sanos. Rev Esp Cir Ortop Traumatol (Engl Ed). 2020;64(4):244-250. doi:10.1016/j.recot.2020.04.001.
  18. Si L, Xuan K, Zhong J, et al. Knee Cartilage Thickness Differs Alongside Ages: A 3-T Magnetic Resonance Research Upon 2,481 Subjects via Deep Learning. Front Med (Lausanne). 2021;7:600049. doi:10.3389/fmed.2020.600049.
  19. Gau CC, Yao TC, Gan ST, et al. Age, gender, height and weight in relation to joint cartilage thickness among school-aged children from ultrasonographic measurement. Pediatr Rheumatol Online J. 2021;19(1):71. Published 2021 May 12. doi:10.1186/s12969-021-00554-w.
  20. Herrera H GA, Llinás PJ, Flórez L, Blanco Montes C, Vernaza Obando D, Díaz Solorzano A, et al. Ultrasound measurement of femoral cartilage thickness in the knee of healthy young university students. Rev Esp Cir Ortop Traumatol. 2020 Jul 1;64(4):244–50. DOI: 10.1016/j.recote.2020.06.003.
  21. Du JY, Sivasundaram L, Trivedi NN, Voos JE, Victoroff BN. Obesity Is Preferentially Associated With Patellofemoral Compartment Wear: A Magnetic Resonance Imaging Assessment. J Am Acad Orthop Surg. 2021;29(14):e722-e731. doi:10.5435/JAAOS-D-20-00596.
  22. Pamukoff DN, Vakula MN, Holmes SC, Shumski EJ, Garcia SA. Body mass index moderates the association between gait kinetics, body composition, and femoral knee cartilage characteristics. J Orthop Res. 2020;38(12):2685-2695. doi:10.1002/jor.24655.
  23. Collins AT, Kulvaranon ML, Cutcliffe HC, et al. Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI. Arthritis Res Ther. 2018;20(1):232. doi:10.1186/s13075-018-1727-4.
  24. Shah RF, Martinez AM, Pedoia V, Majumdar S, Vail TP, Bini SA. Variation in the Thickness of Knee Cartilage. The Use of a Novel Machine Learning Algorithm for Cartilage Segmentation of Magnetic Resonance Images. Jou Athr. 2019;34(10):2210-2215. doi:10.1016/j.arth.2019.07.022.

How to Cite

Pane, R. V., Aisyah, Ariani, H., Isparnadi, E., Al Hajiri, A. Z. Z., & Setiawan, A. (2022). Ultrasound assessment of femoral cartilage thickness among healthy Indonesian adults. Bali Medical Journal, 11(3), 2013–2016.




Search Panel