Skip to main content Skip to main navigation menu Skip to site footer

Platelet-rich fibrin (PRF) graft and amniotic membrane graft on transforming growth factor-β (TGF-β) and type 1 collagen post conjunctival excision

  • Abdi Roy Nababan ,
  • Daniar Indah Suryowati ,
  • Evelyn Komaratih ,
  • Yulia Primitasari ,
  • Djoko Legowo ,
  • Paulus Budiono Notopuro ,
  • Hari Basuki Notobroto ,

Abstract

Background: Conjunctiva, when injured, can heal spontaneously. However, in extensive wounds, wound healing is often accompanied by scarring and wound contraction. Currently, for cases of disease and trauma to the surface of the eyeball, it can be reconstructed using the amniotic membrane, but there are still weaknesses in the use of amnion. Platelet-rich fibrin (PRF) is currently being developed for the reconstruction of ocular surface wounds.

Methods: A total of 20 male New Zealand rabbits (20 eyes) were divided into two groups. In the first group, conjunctival excision and PRF membrane graft suturing were performed on the right eye conjunctival defect, while the second group had an amniotic membrane sutured on the right eye conjunctival defect. On the 14th day, enucleation was carried out and continued with histopathological examination using immunohistochemistry using TGF antibodies and type 1 collagen to evaluate the levels of TGF and type 1 collagen in the conjunctiva.

Results: The results after 14 days of treatment showed that there was a very significant difference in TGF Beta expression between the AMT group and the PRF group (p = 0.007*; <0.05). However, in the expression of type 1 collagen, there was no significant difference in the expression of type 1 collagen between the AMT group and the PRF group (p = 0.791; >0.05).

Conclusion: There were differences in the expression of TGF-β and type 1 collagen in the administration of the PRF membrane compared to the administration of the amniotic membrane after conjunctival excision of experimental male New Zealand rabbits on day 14.

References

  1. Schrader S, Notara M, Beaconsfield M, Tuft SJ, Daniels JT, Geerling G. Tissue engineering for conjunctival reconstruction: established methods and future outlooks. Curr Eye Res. 2009;34(11):913-924. doi:10.3109/02713680903198045.
  2. Drechsler CC, Kunze A, Kureshi A, et al. Development of a conjunctival tissue substitute on the basis of plastic compressed collagen. J Tissue Eng Regen Med. 2017;11(3):896-904. doi:10.1002/term.1991.
  3. Huang D, Xu B, Yang X, Xu B, Zhao J. Conjunctival structural and functional reconstruction using acellular bovine pericardium graft (Normal GEN®) in rabbits. Graefes Arch Clin Exp Ophthalmol. 2016;254(4):773-783. doi:10.1007/s00417-015-3201-1.
  4. Erkasan ST, Mustika A, Basuki NH, Hermawan D, and Komaratih E. Attenuation of Transforming Growth Factor-? Expression by Alteplase in Anterior Lens Capsule Fibrosis Model with Fibrin Reaction In Vitro. International Journal of Research Publications. 2021;82(1). https://doi.org/10.47119/ijrp100821820212177.
  5. Hall AH. Epidemiology of ocular chemical burn injuries. In: Chemical Ocular Burns: New Understanding and Treatments. Springer Berlin Heidelberg. 2011. p9–15.
  6. Hung KH, Hsiao CH, Tan HY, et al. Clinical demographics of pterygium excision and prevalence of conjunctival intraepithelial neoplasia: a 15-year review. Int Ophthalmol. 2020;40(7):1781-1788. doi:10.1007/s10792-020-01347-y.
  7. Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl KP. Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int. 2011;108(14):243-248. doi:10.3238/arztebl.2011.0243.
  8. Sudrajat N, Nurhidayat BR, Putra OS, Loebis R, Zuhria I. Relation between Blood Parameters and Platelet-Rich Fibrin Membrane Size for Ocular Graft. NeuroQuantology. 2022;20(4). p454–9. DOI:10.14704/nq.2022.20.4.NQ22258.
  9. Permatasari D, Soebagjo HD, Zuhria I, Kurniasari N, Notobroto HB, Nandini C. Cryotherapy Has No Significant Effect on MMP-9 and TGF-β1 Expression in Fungal Corneal Ulcer. Indones Biomed J. 2021;13(3). p295–302. DOI:10.18585/inabj.v13i3.1516.
  10. Can ME, Çakmak HB, Dereli Can G, Ünverdi H, Toklu Y, Hücemenoğlu S. A Novel Technique for Conjunctivoplasty in a Rabbit Model: Platelet-Rich Fibrin Membrane Grafting. J Ophthalmol. 2016;2016:1965720. doi:10.1155/2016/1965720.
  11. Arta WS and Komaratih E. Inhibition of Type I Collagen Expression in Fibrosis Prevention after Trabeculectomy: Oryctolagus cuniculus. Sys Rev Pharm. 2020;11(6). p972-978.
  12. Chopra T, Biomim Biomater J, Biomim J, Eng BT. The Preparation of Silk Fibroin Modified Pbt-Co-Pbs/Peg Composite Films and their Effects on Clinical Human Salivary Epithelial Cells Transplantation. Tissue Eng. 2013;18(1). DOI:10.4172/1662-100X.1000106
  13. Costa E, Neto Murta J. Amniotic membrane in ophthalmology. In: Amniotic Membrane: Origin Characterization and Medical Applications. Springer Netherlands. 2015. p105–22.
  14. Laranjo M. Preservation of amniotic membrane. In: Amniotic Membrane: Origin Characterization and Medical Applications. Springer Netherlands; 2015. p. 209–30.
  15. Paolin A, Cogliati E, Trojan D, et al. Amniotic membranes in ophthalmology: long term data on transplantation outcomes. Cell Tissue Bank. 2016;17(1):51-58. doi:10.1007/s10561-015-9520-y.
  16. Liu J, Sheha H, Fu Y, Giegengack M, Tseng SC. Oral mucosal graft with amniotic membrane transplantation for total limbal stem cell deficiency. Am J Ophthalmol. 2011;152(5):739-47.e1. doi:10.1016/j.ajo.2011.03.037.
  17. Burman S, Tejwani S, Vemuganti GK, Gopinathan U, Sangwan VS. Ophthalmic applications of preserved human amniotic membrane: a review of current indications. Cell Tissue Bank. 2004;5(3):161-175. doi:10.1023/B:CATB.0000046067.25057.0a.
  18. Dohan Ehrenfest DM. How to optimize the preparation of leukocyte- and platelet-rich fibrin (L-PRF, Choukroun's technique) clots and membranes: introducing the PRF Box. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(3):275-280. doi:10.1016/j.tripleo.2010.05.048.
  19. Nowak M, Madej JA, Dzięgiel P. Intensity Of Cox2 Expression In Cells Of Soft Tissue Fibrosacrcomas In Dogs As Related To Grade Of Tumour Malignancy. Bull Vet Inst Pulawy. 2007;51. p275-279.
  20. Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors. 2011;29(5):196-202. doi:10.3109/08977194.2011.595714.
  21. Zada M, Pattamatta U, White A. Modulation of Fibroblasts in Conjunctival Wound Healing. Ophthalmology. 2018;125(2):179-192. doi:10.1016/j.ophtha.2017.08.028.
  22. Sari R, Lastianny SP, Fadhilah AN. The Effect Of Biological Membranes to Fibroblast Proliferation: Platelet-Rich Fibrin Releasate Vs. Amniotic (Research report). Dentino. 2019;4(1). p83-86.
  23. Nakamura T, Yoshitani M, Rigby H, et al. Sterilized, freeze-dried amniotic membrane: a useful substrate for ocular surface reconstruction. Invest Ophthalmol Vis Sci. 2004;45(1):93-99. doi:10.1167/iovs.03-0752.
  24. Hsu WC, Spilker MH, Yannas IV, Rubin PA. Inhibition of conjunctival scarring and contraction by a porous collagen-glycosaminoglycan implant. Invest Ophthalmol Vis Sci. 2000;41(9):2404-2411.
  25. Zhou H, Lu Q, Guo Q, et al. Vitrified collagen-based conjunctival equivalent for ocular surface reconstruction. Biomaterials. 2014;35(26):7398-7406. doi:10.1016/j.biomaterials.2014.05.024.

How to Cite

Nababan, A. R., Suryowati, D. I., Komaratih, E., Yulia Primitasari, Legowo, D., Notopuro, P. B., & Notobroto, H. B. (2022). Platelet-rich fibrin (PRF) graft and amniotic membrane graft on transforming growth factor-β (TGF-β) and type 1 collagen post conjunctival excision. Bali Medical Journal, 11(3), 1744–1750. https://doi.org/10.15562/bmj.v11i3.3733

HTML
0

Total
0

Share

Search Panel

Abdi Roy Nababan
Google Scholar
Pubmed
BMJ Journal


Daniar Indah Suryowati
Google Scholar
Pubmed
BMJ Journal


Evelyn Komaratih
Google Scholar
Pubmed
BMJ Journal


Yulia Primitasari
Google Scholar
Pubmed
BMJ Journal


Djoko Legowo
Google Scholar
Pubmed
BMJ Journal


Paulus Budiono Notopuro
Google Scholar
Pubmed
BMJ Journal


Hari Basuki Notobroto
Google Scholar
Pubmed
BMJ Journal