Skip to main content Skip to main navigation menu Skip to site footer

Diagnostic value of qualitative, semiquantitative, and quantitative parameter of dynamic contrast-enhanced MRI in musculoskeletal tumor

  • Elysanti Dwi Martadiani ,
  • I Wayan Juli Sumadi ,
  • I Wayan Gede Artawan Eka Putra ,
  • Faradilla Novita Anggreni ,
  • Budi Martono ,
  • Yori Primanda ,
  • Felicia Nike ,
  • Triningsih ,

Abstract

Background: Dynamic contrast-enhanced MRI (DCE-MRI) is a functional imaging technique using gadolinium contrast to enhance the tumor site. Several reported the diagnostic performance of DCE-MRI with various parameters used qualitatively, semi-quantitatively or quantitatively to differentiate benign and malignant soft tissue tumors. However, those evaluations were done separately. We investigated three DCE-MRI parameters simultaneously in determining musculoskeletal tumor malignancy: qualitative, semiquantitative and quantitative.

Method: This was a retrospective diagnostic study conducted in the Radiology Department of Prof. dr. IGNG Ngoerah Hospital Denpasar, Bali, in January – September 2022. We evaluated patients' qualitative, semiquantitative and quantitative DCE-MRI results of musculoskeletal tumors, also the histopathological result as the gold standard. We analyzed the ROC curve to predict the best cut-off value. The p-value <0.05 was significant.

Result: We found the qualitative DCE-MRI analysis showing AUC was 0.847. The qualitative parameters showed the best cut-off value with 68.4% sensitivity, 90.9% specificity, 92.9% PPV and 62.5% NPV. On the other hand, semiquantitative AUC was around 0.368 – 0.593, and quantitative parameters AUC was estimated at 0.380 – 0.612. Both semiquantitative and quantitative parameters did not produce the cut-off value.

Conclusion: Qualitative DCE-MRI parameters are a potential predictor for musculoskeletal malignancy.

References

  1. Drapé JL. Advances in magnetic resonance imaging of musculoskeletal tumours. Orthopaedics & Traumatology: Surgery & Research 2013; 99S, S115—S123. DOI : http://dx.doi.org/10.1016/j.otsr.2012.12.005
  2. Taylor JS, Reddick JE. Dynamic Contrast-Enhanced MR Imaging in Musculoskeletal Tumors. In : Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology. 1st ed. Eds. Jackson E, Buckley DL, Parker GJM. Berlin: Springer; 2005, pp.215-237. DOI:10.1007/3-540-26420-5_13
  3. Van Rijswijk CS, Geirnaerdt MJ, Hogendoorn PC, et al. Soft tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology 2004;233(2):493—502.DOI: 10.1148/radiol.2332031110
  4. Malek M, Oghabian Z,2 Tabibian E, Rahmani M, Yazdi SNM , Oghabian MA, Parviz S. Comparison of Qualitative (Time Intensity Curve Analysis), Semiquantitative, and Quantitative Multi-Phase 3T DCE-MRI Parameters as Predictors of Malignancy in Adnexal. Asian Pac J Cancer Prev. 2019; 20(6): 1603–1611. DOI: 10.31557/APJCP.2019.20.6.1603
  5. Costa, F. M., Canella, C., & Gasparetto, E. Advanced magnetic resonance imaging techniques in the evaluation of musculoskeletal tumors. Radiologic Clinics 201; 49(6), 1325-1358. DOI: 10.1016/j.rcl.2011.07.014.
  6. Verstraete KL, Lang P. Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol 2000;34(3):229—46. DOI: 10.1016/s0720-048x(00)00202-3
  7. Tofts PS, , Brix G, , Buckley DL, , Evelhoch JL, , Henderson E, , Knopp MV, , et al.. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999; 10: 223–32. doi: https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
  8. Noebauer-Huhmann I-M, Amann G, Krssak M, Panotopoulos J, Szomolanyi P, Weber M, et al. Use of diagnostic dynamic contrast-enhanced (DCE)-MRI for targeting of soft tissue tumour biopsies at 3T: preliminary results. Eur Radiol 2015; 25: 2041–8. DOI : 10.1007/s00330-014-3576-0.
  9. Zhang Y, Yue B, Zhao X, Chen H, Sun L, Zhang X, Hao D. Benign or Malignant Characterization of Soft-Tissue Tumors by Using Semiquantitative and Quantitative Parameters of Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Can Assoc Radiol J 2020;71(1):92-99. DOI: 10.1177/0846537119888409.
  10. de Groot M, Patel N, Manavaki R, Janiczek RL, Bergstrom M, Östör A, et al. Quantifying disease activity in rheumatoid arthritis with the TSPO PET ligand 18F-GE-180 and comparison with 18F-FDG and DCE-MRI. EJNMMI Research 2019; 9: 113. DOI : https://doi.org/10.1186/s13550-019-0576-8
  11. Tuncbilek N, Karakas HM, Okten OO. Dynamic contrast enhanced MRI in the differential diagnosis of soft tissue tumors. Eur J Radiol. 2005 Mar;53(3):500-5. doi: 10.1016/j.ejrad.2004.04.012.
  12. Choi YJ, Lee IS, Song YS, Kim IK, Choi K, Song JW. Diagnostic performance of diffusion-weighted (DWI) and dynamic contrast-enhanced (DCE) MRI for the differentiation of benign from malignant soft-tissue tumors. J Magn Reson Imaging. 2019 Sep;50(3):798-809. DOI: 10.1002/jmri.26607
  13. Teixeira PAG, Leplat C, Chen B, Verbizier JD, Beaumont M, Badr S, et al. Contrast-enhanced 3T MR perfusion of musculo-skeletal tumours: T1 value heterogeneity assessment and evaluation of the influence of T1 estimation methods on quantitative parameters. Eur Radiol 2017; 27:4903–4912. DOI: doi: 10.1007/s00330-017-4891-z
  14. Leplat C, Hossu G, Chen B, De Verbizier J, Beaumont M, Blum A, Teixeira PAG. Contrast-Enhanced 3-T Perfusion MRI With Quantitative Analysis for the Characterization of Musculoskeletal Tumors: Is It Worth the Trouble? American Journal of Roentgenology 2018; 211(5): 1092-1098. DOI : 10.2214/AJR.18.19618
  15. Park MY, Jee W, Kim SK, Lee S Jung J. Preliminary Experience Using Dynamic MRI at 3.0 Tesla for Evaluation of Soft Tissue Tumors. Korean J Radiol 2013;14(1):102-109 DOI: http://dx.doi.org/10.3348/kjr.2013.14.1.102
  16. Lee SK, Jee W-H, Jung CK, Chung Y-G. Multiparametric quantitative analysis of tumor perfusion and diffusion with 3T MRI: differentiation between benign and malignant soft tissue tumors. Br J Radiol. 2020;93(1115):20191035. doi: 10.1259/bjr.20191035.
  17. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH. Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst. 2005;97(3):172-187. DOI: 10.1093/jnci/dji023.
  18. Lee M-J, Chhabra A, Pressey JG, et al: MR imaging of pediatric musculoskeletal tumors: Recent advances and clinical applications. Magn Reson Imaging Clin N Am 27(2):341-371, 2019. DOI: https://doi.org/10.1016/j.mric.2019.01.010
  19. Yıldırım A, Doğan S, Okur A, İmamoğlu H, Karabıyık O, Öztürk M. The Role of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Differentiation of Soft Tissue Masses. Eur J Gen Med 2016; 13(1): 37-44. DOI : 10.15197/ejgm.01412
  20. Tokuda O, Hayashi N, Taguchi K, et al. Dynamic contrast enhanced perfusion MR imaging of diseased vertebrae: analysis of three parameters and the distribution of the time-intensity curve patterns. Skeletal Radiol 2005;34(10):632—8. DOI: 10.1007/s00256-005-0949-0
  21. Geirnaerdt MJA, Hogendoorn PCW, Bloem JL, Taminiau AHM, Woude HJV. Cartilaginous tumors: fast contrast-enhanced MR imaging. Radiology. 2000;214(2):539-546. DOI: 10.1148/radiology.214.2.r00fe12539.
  22. Sundareswaran N , Elanchezhian E. Role of Time Intensity Curve in Dynamic Contrast MRI Evaluation of Soft Tissue Tumor. International Journal of Contemporary Medicine Surgery and Radiology.2020; 5 (Issue 2): B60-B65. DOI: http://dx.doi.org/10.21276/ijcmsr.2020.5.2.14
  23. Biffar A, Dietrich O, Sourbron S, Duerr HR, Reiser MF, Baur-Melnyk A. Diffusion and perfusion imaging of bone marrow. Eur J Radiol. 2010;76(3):323–8. DOI 10.1016/j.ejrad.2010.03.011.
  24. Agner SC, Rosen MA, Englander S, et al. Computerized image analysis for identifying triple-negative breast cancers and differentiating them from other molecular subtypes of breast cancer on dynamic contrast-enhanced MR images: a feasibility study. Radiology. 2014;272(1):91-99. DOI: 10.1148/radiol.14121031
  25. Sourbron S. Technical aspects of MR perfusion. Eur J Radiol. 2010;76(3):304-313. DOI: 10.1016/j.ejrad.2010.02.017.
  26. Essig M, Shiroishi MS, Nguyen TB, et al: Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol 2013; 200(1):24-34. DOI: https://doi.org/10.2214/AJR.12.9543
  27. Libicher M, Bernd L, Schenk JP, Mädler U, Grenacher L, Kauffmann GW: Characteristic perfusion pattern of osseous giant cell tumor in dynamic contrast-enhanced MRI. Radiologe. 2001; 41(7): 577–582. DOI: 10.1007/s001170170148.
  28. Wiratnaya IGE, Susila IWRB, Sindhughosa DA. Tuberculous osteomyelitis mimicking a lytic bone tumor: report of two cases and literature review. Rev Bras Ortop (Sao Paulo). 2019;54(6):731-735. DOI: 10.1016/j.rboe.2017.11.015.
  29. García-Figueiras R, Padhani AR, Beer AJ, et al. Imaging of tumor angiogenesis for radiologists. Part 1. Biological and technical basis. Curr Probl Diagn Radiol 2015; 44:407–424. DOI: 10.1067/j.cpradiol.2015.02.010
  30. Vilanova JC, Baleato-Gonzalez S, Romero MJ, et al. Assessment of musculoskeletal malignancies with functional MR imaging. Magn Reson Imaging Clin N Am 2016; 24:239–259. DOI: 10.1016/j.mric.2015.08.006

How to Cite

Martadiani, E. D., Sumadi, I. W. J., Putra, I. W. G. A. E., Anggreni, F. N., Martono, B., Primanda, Y., Nike, F., & Triningsih. (2022). Diagnostic value of qualitative, semiquantitative, and quantitative parameter of dynamic contrast-enhanced MRI in musculoskeletal tumor. Bali Medical Journal, 11(3), 2075–2084. https://doi.org/10.15562/bmj.v11i3.3880

HTML
1

Total
0

Share

Search Panel

Elysanti Dwi Martadiani
Google Scholar
Pubmed
BMJ Journal


I Wayan Juli Sumadi
Google Scholar
Pubmed
BMJ Journal


I Wayan Gede Artawan Eka Putra
Google Scholar
Pubmed
BMJ Journal


Faradilla Novita Anggreni
Google Scholar
Pubmed
BMJ Journal


Budi Martono
Google Scholar
Pubmed
BMJ Journal


Yori Primanda
Google Scholar
Pubmed
BMJ Journal


Felicia Nike
Google Scholar
Pubmed
BMJ Journal


Triningsih
Google Scholar
Pubmed
BMJ Journal