Skip to main content Skip to main navigation menu Skip to site footer

The impact of transcutaneous auricular vagus nerve stimulation on C-reactive protein in patients with chronic low back pain

  • Yaniar Uzlifatin ,
  • Raden Ayu Meisy Andriana ,
  • Indrayuni Lukitra Wardhani ,
  • Imam Subadi ,
  • Paulus Sugianto ,
  • Soenarnatalina Melaniani ,

Abstract

Background: The purpose of this study is to evaluate the impact of transcutaneous auricular vagus nerve stimulation (tVNS) as an additional therapy to exercise program on C-reactive protein (CRP) in patients with chronic low back pain.

Methods: Twenty-two patients between the ages 18-55 with chronic low back pain (CLBP) were randomly divided into 2 groups. The intervention group was assigned 10 sessions of tVNS and 4 sessions of exercise program (EXC + tVNS), while the control group was assigned 4 sessions of exercise program (EXC). Patients were assessed before and 2 weeks after treatments using C-reactive protein (CRP).

Results: Transcutaneous auricular vagus nerve stimulation was well tolerated, and no side effects were reported. The mean CRP was slightly increased in both groups. In the intervention group was from 0.22 ± 0.13 mg/dl to 0.39 ± 0.30 mg/dl (P=0.074), and in the control group was from 0.21 ± 0.18 mg/dl to 0.22 ± 0.18 mg/dl (P=0,813). The between-group comparison showed no significantly different. Following Cohen’s D, the effect size of the intervention group (0.735) was higher than the control group (0.055).

Conclusion: Based on the analysis data, we conclude that tVNS therapy did not give additional benefit together with exercise on CRP levels in patients with CLBP. It was determined that additional research is required to study the effect of tVNS and exercise independently in CLBP with longer follow-up times and other tVNS methodological approaches.  

References

  1. Wu A, March L, Zheng X, et al. Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the Global Burden of Disease Study 2017. Ann Transl Med. 2020;8(6):299. doi:10.21037/atm.2020.02.175.
  2. Yiengprugsawan V, Hoy D, Buchbinder R, Bain C, Seubsman SA, Sleigh AC. Low back pain and limitations of daily living in Asia: longitudinal findings in the Thai cohort study. BMC Musculoskelet Disord. 2017;18(1):19. Published 2017 Jan 19. doi:10.1186/s12891-016-1380-5.
  3. Khan AN, Jacobsen HE, Khan J, et al. Inflammatory biomarkers of low back pain and disc degeneration: a review. Ann N Y Acad Sci. 2017;1410(1):68-84. doi:10.1111/nyas.13551.
  4. Surbakti KP, Nasution I. Association between Serum Levels of High Sensitivity C-Reactive Protein, Interleukin-1, and Interleukin-6 with Pain Intensity in Patients with Low Back Pain without Sciatica. 2020 Feb 05; 8(B):6-10. https://doi.org/10.3889/oamjms.2020.4114.
  5. Barr KP, Standaert CJ, Johnson SC, Sandhu NS. 2021. Low Back Disoder. In: In Cifu DX. Braddom’s Physical Medicine And Rehabilitation 6th edition. Philadelphia: Elsevier Saunders. 2021. p 651-689.
  6. Last AR, Hulbert K. Chronic low back pain: evaluation and management. Am Fam Physician. 2009;79(12):1067-1074.
  7. Amalia V, Wulan SMM, Andriati, Santoso D, Melaniani S. Effect of intradialytic aerobic cycling exercise on serum TNF-alpha levels in chronic kidney disease patients undergoing regular hemodialysis. Medicina dello Sport. 2022;75(2). p227-37. DOI:10.23736/S0025-7826.22.04149-7.
  8. Straube A, Ellrich J, Eren O, Blum B, Ruscheweyh R. Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain. 2015;16:543. doi:10.1186/s10194-015-0543-3.
  9. Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res. 2018;11:203-213. Published 2018 May 16. doi:10.2147/JIR.S163248.
  10. Badran BW, Yu AB, Adair D, et al. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations. J Vis Exp. 2019;(143):10.3791/58984. Published 2019 Jan 7. doi:10.3791/58984.
  11. Yap JYY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T. Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Front Neurosci. 2020;14:284. Published 2020 Apr 28. doi:10.3389/fnins.2020.00284.
  12. Kisner C, Thorp JN. The Spine Exercise and Manipulation Intervention. In: Kisner C, Colby LA, Borstad J. Therapeutic Exercise Foundations and Techniques Seventh Edition. Philadephia: F.A Davis Company. 2018. p491-545.
  13. Dumke CL. Health Related Physical Fitness Testing and Interpretation. In: Riebe D, Ehrman JK, Liguori G, Magal M. ACSM’s Guidelines for Exercise Testing and Prescription 10th Edition. Philadephia: Wolters Kluwer. 2018.
  14. Hein E, Nowak M, Kiess O, et al. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm (Vienna). 2013;120(5):821-827. doi:10.1007/s00702-012-0908-6.
  15. Kutlu N, Özden AV, Alptekin HK, Alptekin JÖ. The Impact of Auricular Vagus Nerve Stimulation on Pain and Life Quality in Patients with Fibromyalgia Syndrome. Biomed Res Int. 2020;2020:8656218. Published 2020 Feb 28. doi:10.1155/2020/8656218.
  16. Luan YY, Yao YM. The Clinical Significance and Potential Role of C-Reactive Protein in Chronic Inflammatory and Neurodegenerative Diseases. Front Immunol. 2018;9:1302. Published 2018 Jun 7. doi:10.3389/fimmu.2018.01302.
  17. Setyowatie L, Sukanto H, Murtiastutik D. C-reactive in various degrees severity of psoriasis vulgaris. EJ-UNAIR. 2016;28(2). p78-87. DOI:10.20473/bikk.V28.2.2016.78-87.
  18. Macphail K. C-reactive protein, chronic low back pain and, diet and lifestyle. International Musculoskeletal Medicine. 2015;37(1). p29-32. DOI:10.1179/1753615415Y.0000000001.
  19. Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol. 2016;594(20):5781-5790. doi:10.1113/JP271539.
  20. Pavlov VA, Tracey KJ. Neural circuitry and immunity. Immunologic Research. 2015;63(3). p38-57. DOI: 10.1007/s12026-015-8718-1.
  21. Aranow C, Atish-Fregoso Y, Lesser M, et al. Transcutaneous auricular vagus nerve stimulation reduces pain and fatigue in patients with systemic lupus erythematosus: a randomised, double-blind, sham-controlled pilot trial. Annals of the Rheumatic Diseases. 2021;80(2). p203-208. DOI: 10.1136/annrheumdis-2020-217872.
  22. Corcoran C, Connor TJ, O'Keane V, Garland MR. The effects of vagus nerve stimulation on pro- and anti-inflammatory cytokines in humans: a preliminary report. Neuroimmunomodulation. 2005;12(5):307-309. doi:10.1159/000087109.
  23. Drewes AM, Brock C, Rasmussen SE, et al. Short-term transcutaneous non-invasive vagus nerve stimulation may reduce disease activity and pro-inflammatory cytokines in rheumatoid arthritis: results of a pilot study. Scand J Rheumatol. 2021;50(1):20-27. doi:10.1080/03009742.2020.1764617.
  24. Stavrakis S, Humphrey MB, Scherlag BJ, et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol. 2015;65(9):867-875. doi:10.1016/j.jacc.2014.12.026.
  25. Veiz E, Kieslich SK, Czesnik D, Herrmann-Lingen C, Meyer T, Staab J. Increased Concentrations of Circulating Interleukins following Non-Invasive Vagus Nerve Stimulation: Results from a Randomized, Sham-Controlled, Crossover Study in Healthy Subjects. Neuroimmunomodulation. 2022;29(4):450-459. doi:10.1159/000524646.
  26. Go YY, Ju WM, Lee CM, Chae SW, Song JJ. Different Transcutaneous Auricular Vagus Nerve Stimulation Parameters Modulate the Anti-Inflammatory Effects on Lipopolysaccharide-Induced Acute Inflammation in Mice. Biomedicines. 2022;10(2):247. doi:10.3390/biomedicines10020247.
  27. Bonaz B, Sinniger V, Pellissier S. The Vagus Nerve in the Neuro-Immune Axis: Implications in the Pathology of the Gastrointestinal Tract. Front Immunol. 2017;8:1452. Published 2017 Nov 2. doi:10.3389/fimmu.2017.01452.
  28. Libardi CA, De Souza GV, Cavaglieri CR, Madruga VA, Chacon-Mikahil MP. Effect of resistance, endurance, and concurrent training on TNF-α, IL-6, and CRP. Med Sci Sports Exerc. 2012;44(1):50-56. doi:10.1249/MSS.0b013e318229d2e9.
  29. Gde Agung Mahendra ID, Subadi I, Wardhani IL, Satyawati R, Alit Pawana IP, Melaniani S. Effects of Otago Exercise Program on serum Interleukin-6 level in older women. Ann Med Surg (Lond). 2022;78:103733. doi:10.1016/j.amsu.2022.103733.
  30. Laswati H, Andriana M, Subadi I, Yuanita I. The effects of physical exercise on c-reactive protein in patients wth post ischemic stroke. Folia Medica Indonesiana. 2016;52(3). p180-184. DOI:10.20473/fmi.v52i3.5449.
  31. Kim SK, Jung I, Kim JH. Exercise reduces C-reactive protein and improves physical function in automotive workers with low back pain. J Occup Rehabil. 2008;18(2):218-222. doi:10.1007/s10926-007-9120-1.
  32. Mohsenzadeh M, Aghaie F, Ghaznavi SH. The Effect of Core Stabilty and Aerobic Exercise on Back Pain and HS-CRP in Male Workers. JOC. 2021;11(3). p58-67.
  33. Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev. 2000;80(3):1055-1081. doi:10.1152/physrev.2000.80.3.1055.
  34. Villar-Fincheira P, Sanhueza-Olivares F, Norambuena-Soto I, et al. Role of Interleukin-6 in Vascular Health and Disease. Front Mol Biosci. 2021;8:641734. Published 2021 Mar 16. doi:10.3389/fmolb.2021.641734.
  35. Reihmane D, Dela F. Interleukin-6: possible biological roles during exercise. Eur J Sport Sci. 2014;14(3):242-250. doi:10.1080/17461391.2013.776640.
  36. Del Giudice M, Gangestad SW. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav Immun. 2018;70:61-75. doi:10.1016/j.bbi.2018.02.013.
  37. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol (1985). 2005;98(4):1154-1162. doi:10.1152/japplphysiol.00164.2004.
  38. Agarwal M, Singh S, Narayan J, Pandey S, Tiwari S, Sharma P. Cardiovascular Response and Serum Interleukin-6 Level in Concentric Vs. Eccentric Exercise. J Clin Diagn Res. 2017;11(4):CC04-CC08. doi:10.7860/JCDR/2017/25281.9703.
  39. Liang C, Zhou X, Li M, Song Z, Lan J. Effects of Treadmill Exercise on Mitochondrial DNA Damage and Cardiomyocyte Telomerase Activity in Aging Model Rats Based on Classical Apoptosis Signaling Pathway. Biomed Res Int. 2022;2022:3529499. Published 2022 Apr 14. doi:10.1155/2022/3529499.
  40. You JH, Kim SY, Oh DW, Chon SC. The effect of a novel core stabilization technique on managing patients with chronic low back pain: a randomized, controlled, experimenter-blinded study. Clin Rehabil. 2014;28(5):460-469. doi:10.1177/0269215513506231.

How to Cite

Uzlifatin, Y., Andriana, R. A. M., Wardhani, I. L., Subadi, I., Sugianto, P., & Melaniani, S. (2023). The impact of transcutaneous auricular vagus nerve stimulation on C-reactive protein in patients with chronic low back pain. Bali Medical Journal, 12(1), 477–482. https://doi.org/10.15562/bmj.v12i1.4017

HTML
8

Total
2

Share

Search Panel

Yaniar Uzlifatin
Google Scholar
Pubmed
BMJ Journal


Raden Ayu Meisy Andriana
Google Scholar
Pubmed
BMJ Journal


Indrayuni Lukitra Wardhani
Google Scholar
Pubmed
BMJ Journal


Imam Subadi
Google Scholar
Pubmed
BMJ Journal


Paulus Sugianto
Google Scholar
Pubmed
BMJ Journal


Soenarnatalina Melaniani
Google Scholar
Pubmed
BMJ Journal