Skip to main content Skip to main navigation menu Skip to site footer

Effect of Spiramycin and Moringa leaf feeding in improving placenta, heart, histopathological neurons and glia in fetal models with toxoplasmosis

  • Hafi Nurinasari ,
  • Sajidan ,
  • Bambang Purwanto ,
  • Dono Indarto ,
  • Didik T Subekti ,
  • Hendrastuti Apriningsih ,
  • Ariva Syiva’a ,
  • Soetrisno ,


Background: Toxoplasmosis is a protozoan disease caused by Toxoplasma gondii that can cause fetal abortion, stillbirth, death, or fetal and neonatal abnormalities. Spiramycin prophylactic purpose is to prevent fetal infection in toxoplasmosis. While Moringa oleifera contains bioactive compounds that benefit from treating oxidative stress and infections. This study aims to evaluate the effect of Spiramycin and Moringa leaf extract in improving the placenta, heart, histopathological neurons and glia in fetal rat models with toxoplasmosis.

Methods: An experimental study with a post-test-only control group design was done using  24 pregnant female rats divided into the control group receiving spiramycin therapy (P1) and two intervention groups that were given spiramycin and ethanol extract from Moringa leaves at a dose of 240 mg/kg body weight (P2) and combination of spiramycin and ethanol extract from moringa leaves at a dose of 420 mg/kgBW (P3). A histopathological examination was then performed.

Results: Administration of spiramycin and ethanol extract of Moringa leaves at 420 mg/kg body weight had the same histopathological examination results as spiramycin administration. In a histopathological examination of toxoplasmosis pregnant rat placenta and toxoplasmosis fetal rat heart was effective in repairing gliosis in neurons and neuroglia of toxoplasmosis rat fetuses.

Conclusion: Administration of spiramycin and ethanol extract from Moringa leaves was effective in repairing gliosis in neurons and neuroglia of toxoplasmosis rat fetuses.


  1. Halonen SK, Weiss LM. Toxoplasmosis. Hand Clin Neurol. 2013;114:125-145.
  2. Atiyeh M, Khadijeh A. Managing a Case of Toxoplasmosis during Pregnancy In Iran. Journal of Obstetrics, Gynecology and Cancer Research. 2019;4(2):78-80.
  3. Torgerson PR, Mastroiacovo P. The global burden of congenital toxoplasmosis: a systematic review. Bull World Health Organ. 2013;91(7):501-508.
  4. Dwinata IM, Sutarga IM, Damriyasa IM. The Potential Risk Factor For Toxoplasmosis in Balinese Pregnant Women in Indonesia. Bali Medical Journal. 2016, 5(1):116-118.
  5. Retmanasari A, Widartono BS, Wijayanti MA, Artama WT. Prevalence and Risk Factors for Toxoplasmosis in Middle Java, Indonesia. EcoHealth. 2017;14(1):162-170.
  6. Rostami A, Riahi SM, Contopoulos-Ioannidis DG, Gamble HR, Fakhri Y, Shiadeh MN, et al. Acute Toxoplasma infection in pregnant women worldwide: a systematic review and meta-analysis. PLoS neglected tropical diseases. 2019;13(10):e0007807.
  7. Sagel U, Krämer A. Screening of maternal toxoplasmosis in pregnancy: laboratory diagnostics from the perspective of public health requirements. Journal of Bacteriology & Parasitology. 2013;1(S5):1-6.
  8. Bigna JJ, Tochie JN, Tounouga DN, Bekolo AO, Ymele NS, Youda EL, et al. Global, regional, and country seroprevalence of Toxoplasma gondii in pregnant women: a systematic review, modelling and meta-analysis. Scientific Reports. 2020;10(1):1-10.
  9. Aguirre AA, Longcore T, Barbieri M, Dabtitz H, Hill D, Klein P, et al. The one health approach to toxoplasmosis: epidemiology, control, and prevention strategies. EcoHealth. 2019;16(2):378–390.
  10. Peyron F, Lollivier C, Mandelbrot L, Wallon M, Piarroux R, Kieffer F, et al. Maternal and Congenital Toxoplasmosis: Diagnosis and Treatment Recommendations of a French Multidisciplinary Working Group. MDPI Journal. 2019;8(1):24.
  11. Dincel GC, Atmaca HT. Increased expressions of ADAMTS-13 and apoptosis contribute to neuropathology during Toxoplasma gondii encephalitis in mice. Neuropathology. 2015;36(3):211–226.
  12. Suwanti TL. Respon Imun Seluler Plasenta terhadap Infeksi Toxoplasma gondii pada Berbagai Umur Kebuntingan Mencit (Mus Musculus). Media Kedokteran Hewan. 2006;22(3):168-173.
  13. Wei HX, Wei SS, Lindsay DS, Peng HJ. A Systematic Review and Meta-Analysis of the Efficacy of Anti-Toxoplasma gondii Medicines in Humans. PLoS One. 2015;10(9):e0138204.
  14. Silva M, Videira PA, Sackstein R. E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy. Front Immunol. 2018;19(8):1878.
  15. Konstantinovic N, Guegan H, Stajner T, Belaz S, Robert-Gangneux F. Treatment of toxoplasmosis: Current options and future perspectives. Food and Waterborne Parasitology. 2019;15:e00036.
  16. Jimenez MV, Almatrafi MM, Fernandez ML. Bioactive Components in Moringa Oleifera Leaves Protect Aganits Chronic Disease. Antioxidants. 2017;6(4):91.
  17. Leone A, Spada A, Battezzati A, Schiraldi A, Sristil J, Bertoli S. Cultivation, genetic,ethnopharmacology, phytochemistry, and pharmacology of Moringa oleifera leaves: an overview. International Journal of Molecular Sciences. 2015;16(6):12791–12835.
  18. Xu YB, Chen GL, Guo MQ. Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Moringa oleifera from Kenya and Their Correlations with Flavonoids. Antioxidants (Basel). 2019;8(8):296.
  19. Abdull Razis AF, Ibrahim MD, Kntayya SB. Health benefits of Moringa oleifera. Asian Pac J Cancer Prev. 2014;15(20):8571-8576.
  20. Dubey JP, Shen SK, Kwok OC, Thulliez P. Toxoplasmosis in rats (Rattus norvegicus): congenital transmission to first and second generation offspring and isolation of Toxoplasma gondii from seronegative rats. Parasitology. 1997;115(1):9-14.
  21. Ander SE, Rudzki E, Aurora N, Sadovsky Y, Coyne C, Boyle J. Human Placental Synsitiotrofoblast Restrict Toxoplasma gondii Attachment and Replication and Respon to Infection by Producing Immunomodulary Chemokines. American Society for Microbiology. 2018;9(1):e01678-17.
  22. Dunay IR, Gajurel K, Dhakal R, Liesenfeld O, Montoya JG. Treatment of toxoplasmosis: historical perspective, animal models, and current clinical practice. Clin Microbiol Rev. 2018;31:e00057-17.
  23. Zhou Z, Lopez HIAO, Pérez GE, Burgos LM, Farina JM, Saldarriaga C, et al. Toxoplasmosis and the Heart. Curr Probl Cardiol. 2021;46(3):100741.
  24. Kang JK, Kang HK, Hyun CG. Anti-Inflammatory Effects of Spiramycin in LPS-Activated RAW 264.7 Macrophages. Molecules. 2022; 27(10):3202.
  25. Omar M, Abaza E, Mousa E, Ibrahim SM, Rashed H, Farag TI. Effect of spiramycin versus aminoguanidine and their combined use in experimental toxoplasmosis. Journal of Parasitic Diseases. 2021;45(4):1014-1025.
  26. Farooq F, Rai M, Tiwari A, Khan AA, Farooq S. Medicinal properties of Moringa oleifera: An overview of promising healer. Journal of Medicinal Plants Research. 2012;6(27):4368-4374.
  27. Chow BW, Gu C. The molecular constituents of the blood–brain barrier. Trends Neurosci. 2015;38(10):598–608.
  28. Hartati S, Raharjo S, Widiyono I. Studi gambaran histopatologis hepar, pulmo, lien dan otak serta uji serologis pada tikus (Rattus norvegicus) yang diinfeksi Toxoplasma gondii. Jurnal Sain Veteriner. 2017;35(1):9-15.
  29. Ko IG. Therapeutic Strategies Against Apoptosis and Gliosis. Int Neurourol J. 2020;24(Suppl 2):65-66.
  30. Golden N, Mardhika PE, Niryana W, Sukarya IM, Prabawa IPY. Risk factors and novel prognostic score for predicting the 14-day mortality of severe traumatic brain injury patients. Intisari Sains Medis. 2020;11(3):1020–1028.
  31. Nishi L, da Silva Sanfelice RA, da Silva Bortoleti BT, Tomiotto-Pellissier F, Silva TF, Evangelista FF, et al. Moringa oleifera extract promotes apoptosis-like death in Toxoplasma gondii tachyzoites in vitro. Parasitology. 2021;148(12):1447-1457.

How to Cite

Nurinasari, H., Sajidan, Bambang Purwanto, Dono Indarto, Didik T Subekti, Hendrastuti Apriningsih, Ariva Syiva’a, & Soetrisno. (2023). Effect of Spiramycin and Moringa leaf feeding in improving placenta, heart, histopathological neurons and glia in fetal models with toxoplasmosis. Bali Medical Journal, 12(1), 996–1000.