Skip to main content Skip to main navigation menu Skip to site footer

Profile of matrix metalloproteinase activity, markers of collagen and elastin degradation and remodeling during pregnancy, delivery, and puerperium in pelvic organ prolapse 3 months after childbirth

  • Tyas Priyatini ,
  • Budi Iman Santoso ,
  • Trika Irianta ,
  • Herqutanto ,
  • Nuryati Siregar ,
  • Alida Harahap ,
  • Mohamad Sadikin ,

Abstract

Background: This study aims to assess the condition of pelvic organ prolapse related to changes in matrix metalloproteinase activity, elastin degradation and markers of collagen, and remodeling observed during pregnancy, childbirth, and the puerperal period 3 months postpartum. This study included 39 primigravida women who underwent vaginal delivery with a gestational age >36 weeks. This study conducted laboratory tests using blood and urine samples including procollagen type I N-propeptide (PINP), procollagen type-III N-propeptide (PIIINP), telopeptide carboxyl-terminal collagen type I (ICTP), matrix metalloproteinase-9 (MMP). -9), desmosin, and tropoelastin. The second and third blood samples will be examined 24-48 hours postpartum and 6 weeks postpartum.

Method: The Mann-Whitney test and Repeated ANOVA were used to assess the median differences between biomarkers.

Results: In the pelvic floor dysfunction and control groups, a significant relationship was found between serum MMP-9 levels 6 weeks postpartum (p=0.025). There were changes in biomarker levels of collagen and elastin during pregnancy, post-partum, and six weeks postpartum. The amount of degradation (MMP-9) seems to be correlated with the event of POP after childbirth.

Conclusion: There were changes in the biomarker levels of collagen and elastin from pregnancy, post-partum, and six weeks postpartum. In addition, the difference was significant in MMP-9 level six weeks after postpartum in POP group compare to control. 

References

  1. Nygaard I. Prevalence of Symptomatic Pelvic Floor Disorders in US Women. JAMA. 2008;300(11):1311. doi:10.1001/jama.300.11.1311
  2. Handa V, Blomquist J, Knoepp L, Hoskey K, McDermott K, Muñoz A. Pelvic Floor Disorders 5–10 Years After Vaginal or Cesarean Childbirth. Obstetrics & Gynecology. 2011;118(4):777-784. doi:10.1097/aog.0b013e3182267f2f
  3. Rahn DD, Acevedo JF, Word RA. Effect of Vaginal Distention on Elastic Fiber Synthesis and Matrix Degradation in the Vaginal Wall: Potential Roll in the Pathogenesis of Pelvic Organ prolapse. Am J Physiol Regul Integr Comp Physiol. 2008;295(4):R1356. doi: 10.1152/ajpregu.90447.2008
  4. Zong W, Jallah ZC, Stein SE, Abramowitch SD, Moalli PA. Repetitive Mechanical Stretch Increases Extracellular Collagenase Activity in Vaginal Fibroblast. Female Pelvic Med Reconstr Surg. 2010;16(5):257. doi: 10.1097/SPV.0b013e3181ed30d2.
  5. Drewes P, Marinis S, Acevedo J, Keller P, Schaffer J, Word R. Paper 17: Regulation of Lysyl Oxidase in the Vaginal Wall: Role of Estrogen, Progesterone, and Pregnancy. Journal of Pelvic Medicine and Surgery. 2005;11(17):S8-S9. doi:10.1097/01.spv.0000176091.92426.fa
  6. Morrison J J, Clark M I, Powell E K, Cawston T E, Hackett G A, Smith S K. Tissue Collagenase: Serum Levels During Pregnancy and Parturition. Eur J Obstet Gynecol Reprod Biol. 1994;54(94):71. doi: 10.1016/0028-2243(94)90083-3.
  7. Chvapil M. Physiology of Connective Tissue. London: Butterworths. Prague: Czechoslovak Medical Press, 1967. Q J Exp Physiol Cogn Med Sci. 1968;53(4):438-438. doi:10.1113/expphysiol.1968.sp001991
  8. Wieslander C, Marinis S, Drewes P, Keller P, Acevedo J, Word R. Regulation of Elastolytic Proteases in the Mouse Vagina During Pregnancy, Parturition, and Puerperium1. Biol Reprod. 2008;78(3):521-528. doi:10.1095/biolreprod.107.063024
  9. Zong W, Jallah Z, Stein S, Abramowitch S, Moalli P. Repetitive Mechanical Stretch Increases Extracellular Collagenase Activity in Vaginal Fibroblasts. Female Pelvic Med Reconstr Surg. 2010;16(5):257-262. doi:10.1097/spv.0b013e3181ed30d2
  10. Söderberg M, Falconer C, Byström B, Malmström A, Ekman G. Young women with genital prolapse have a low collagen concentration. Acta Obstet Gynecol Scand. 2004;83(12):1193-1198. doi:10.1111/j.0001-6349.2004.00438.x
  11. Sun M-J, Cheng Y-S, Sun R, Cheng W-L, Liu C-S. Changes in mitochondrial DNA copy number and extracellular matrix (ECM) proteins in the uterosacral ligaments of premenopausal women with pelvic organ prolapse. Taiwanese Journal of Obstetrics and Gynecology. 2016;55(1):9-15. doi: 10.1016/j.tjog.2014.04.032
  12. Zhou L, Lee J, Wen Y et al. Biomechanical Properties and Associated Collagen Composition in Vaginal Tissue of Women with Pelvic Organ Prolapse. Journal of Urology. 2012;188(3):875-880. doi:10.1016/j.juro.2012.05.017
  13. Kim T, Sridharan I, Ma Y et al. Identifying distinct nanoscopic features of native collagen fibrils towards early diagnosis of pelvic organ prolapse. Nanomedicine: Nanotechnology, Biology and Medicine. 2016;12(3):667-675. doi:10.1016/j.nano.2015.11.006
  14. Ruiz-Zapata AM, Kerkhof MH, Ghazanfari S, et al. Vaginal Fibroblastic Cells from Women with Pelvic Organ Prolapse Produce Matrices with Increased Stiffness and Collagen Content. Scientific Reports. 2016;6(1):1-9. doi:10.1038/srep22971
  15. Jean-Charles C, Rubod C, Brieu M, Boukerrou M, Fasel J, Cosson M. Biomechanical properties of prolapsed or non-prolapsed vaginal tissue: impact on genital prolapse surgery. International Urogynecology Journal. 2010;21(12):1535-1538. doi:10.1007/s00192-010-1208-z
  16. Jameson S, Swaminathan G, Dahal S et al. Elastin homeostasis is altered with pelvic organ prolapse in cultures of vaginal cells from a lysyl oxidase‐like 1 knockout mouse model. Physiol Rep. 2020;8(11):1-13. doi:10.14814/phy2.14436
  17. Shynlova O, Mitchell J, Tsampalieros A, Langille B, Lye S. Progesterone and Gravidity Differentially Regulate Expression of Extracellular Matrix Components in the Pregnant Rat Myometrium1. Biol Reprod. 2004;70(4):986-992. doi:10.1095/biolreprod.103.023648
  18. Chalikas G K, Tziakas D N. Biomarkers of The Extracellular Matrix and of Collagen Fragments. Clin Chim Acta. 2014 (443):39-47. doi: 10.1016/j.cca.2014.06.028.

How to Cite

Priyatini, T., Santoso, B. I., Irianta, T., Herqutanto, Siregar, N., Harahap, A., & Sadikin, M. (2023). Profile of matrix metalloproteinase activity, markers of collagen and elastin degradation and remodeling during pregnancy, delivery, and puerperium in pelvic organ prolapse 3 months after childbirth. Bali Medical Journal, 12(1), 255–260. https://doi.org/10.15562/bmj.v12i1.4041

HTML
0

Total
0

Share