Skip to main content Skip to main navigation menu Skip to site footer

Prevalence and susceptibility profile of carbapenem-resistant pseudomonas aeruginosa (CRPA) at Dr. Soetomo Public Hospital, Surabaya, from January to December 2021

  • Andritta Febriana ,
  • Agung Dwi Widodo ,
  • Muhammad Vitanata Arfijanto ,

Abstract

Introduction: Pseudomonas aeruginosa is a pathogen that frequently causes healthcare-associated infections (HAI), which has also been associated with high mortality and morbidity rates. Carbapenems have been widely utilized as empiric therapy for P. aeruginosa infections since these organisms have intrinsic resistance to various antibiotics. Therefore, the high rate of CRPA infection became the reason for conducting this study to determine the prevalence and susceptibility pattern of CRPA in Dr. Soetomo Public Hospital, Surabaya, from January to December 2021.

Method: The researcher employed descriptive observational study from secondary data with the first isolate sample of P. aeruginosa per specimen per patient that has been identified by the BD Phoenix™ automated identification and susceptibility testing system from specimens of urine, blood, sterile fluid, pus, tissue, and sputum that are phenotypically resistant to meropenem or imipenem antibiotics, examined at the Clinical Microbiology Unit of Dr. Soetomo Public Hospital, Surabaya, from January to December 2021.

Result: Of the total P. aeruginosa isolates, 149 CRPA isolates were obtained. The researcher conveyed that the majority of the samples were male (59.1%); the most comorbid cases were diabetes mellitus with complications (22.4%) found in the intensive care unit (40.3%); the majority of specimens were from the respiratory tract (43%); the highest antibiotic susceptibility was amikacin (62.4%); the prevalence of CRPA in Dr. Soetomo Public Hospital, Surabaya, from January to December 2021 reached 21.25%.

Conclusion: In this study, CRPA isolates showed the highest sensitivity to amikacin, and the highest distribution of CRPA events was found in the intensive care unit.

References

  1. References
  2. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin Infect Dis. 2019;69(7):565-575. doi: https://doi.org/10.1093/cid/ciz830.
  3. Ansori ANM, Fadholly A, Hayaza S, Susilo RJK, Inayatillah B, Winarni D, Husen SA. A Review on Medicinal Properties of Mangosteen (Garcinia mangostana L.). Res J Pharm Techol. 2020; 13(2):974-982. doi: https://doi.org/10.5958/0974-360X.2020.00182.1.
  4. Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 2019;6(2):109-119. Published 2019 Apr 17. doi: https://doi.org/10.1016/j.gendis.2019.04.001.
  5. Hisham A, Abbas, Fathy M, Serry, Eman M, EL-Masry. Synergic interaction between antibiotics and the artificial sweeteners xylitol and sorbitol against Pseudomonas aeruginosa biofilms. Asian J. Pharm. Res. 2012;2(4):129-131.
  6. Tsao LH, Hsin CY, Liu HY, Chuang HC, Chen LY, Lee YJ. Risk factors for healthcare-associated infection caused by carbapenem-resistant Pseudomonas aeruginosa. J Microbiol Immunol Infect. 2018;51(3):359-366. doi: https://doi.org/10.1016/j.jmii.2017.08.015.
  7. Kharisma VD, Ansori ANM, Jakhmola V, Rizky WC, Widyananda MH, Probojati RT, Murtadlo AAA, Rebezov M, Scherbakov P, Burkov P, Matrosova Y, Romanov A, Sihombing MAEM, Antonius Y, Zainul R. Multi-strain human papillomavirus (HPV) vaccine innovation via computational study: A mini review. Res J Pharm Technol. 2022; 15(8). doi: https://doi.org/10.52711/0974-360X.2022.00638.
  8. Palavutitotai N, Jitmuang A, Tongsai S, Kiratisin P, Angkasekwinai N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PLoS One. 2018;13(2):e0193431. doi: https://doi.org/10.1371/journal.pone.0193431.
  9. Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat. 2019;44:100640. doi: https://doi.org/10.1016/j.drup.2019.07.002.
  10. Clinical and Laboratory Standards Institute. ‘M100 Performance standards for antimicrobial susceptibility testing (32th Edition)’. Wayne, PA: Clinical and laboratory standards institute. 2021.
  11. Gupta A. Synthesis of Novel Nitro Substituted Benzothiazole Derivatives and Antibacterial activity against Pseudomonas aeruginosa. Research J. Pharm. and Tech. 2019;12(10):4663-4668. doi: https://doi.org/10.5958/0974-360X.2019.00803.5.
  12. Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016;3(1):15-21. doi: https://doi.org/10.1177/2049936115621709.
  13. Raheem HQ, Hussein EF, Rasheed AH. Class 1,2 Integron Genes Distribution in Pseudomonas aeruginosa Isolated from Clinical Specimens. Research Journal of Pharmacy and Technology. 2022;15(7):3165-8. doi: https://doi.org/10.52711/0974-360X.2022.00529.
  14. AL-Shimmary SMH, Mohamed NS, Safaa A. S. Al-Qaysi, Almohaidi AMS. Phylogeny Analysis of gyrB Gene and 16S rRNA Genes of Pseudomonas aeruginosa Isolated from Iraqi Patients. Research Journal of Pharmacy and Technology. 2021; 14(5):2517-1. doi: https://doi.org/10.52711/0974-360X.2021.00443.
  15. Al-Obaidi RD, Hussein O.M. Al-Dahmoshi. Molecular Study of Secretion Systems Virulence Protein among Pseudomonas aeruginosa Isolated from different Clinical samples. Research Journal of Pharmacy and Technology 2022; 15(10):4577-3. doi: https://doi.org/10.52711/0974-360X.2022.00768.
  16. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother. 2006;50(1):43-48. doi: https://doi.org/10.1128/AAC.50.1.43-48.2006.
  17. Dantas RC, Ferreira ML, Gontijo-Filho PP, Ribas RM. Pseudomonas aeruginosa bacteraemia: independent risk factors for mortality and impact of resistance on outcome. J Med Microbiol. 2014;63(Pt 12):1679-1687. doi: https://doi.org/10.1099/jmm.0.073262-0.
  18. Raman G, Avendano EE, Chan J, Merchant S, Puzniak L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2018;7:79. Published 2018 Jul 4. doi: https://doi.org/10.1186/s13756-018-0370-9.
  19. Horcajada JP, Montero M, Oliver A, et al. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev. 2019;32(4):e00031-19. doi: https://doi.org/10.1128/CMR.00031-19.
  20. Karuniawati A, Saharman YR, Lestari DC. Detection of carbapenemase encoding genes in Enterobacteriace, Pseudomonas aeruginosa, and Acinetobacter baumanii isolated from patients at Intensive Care Unit Cipto Mangunkusumo Hospital in 2011. Acta Med Indones. 2013;45(2):101-106.
  21. Anggraini D, Kuntaman K, Karuniawati A. Surveilans resistensi antibiotik rumah sakit kelas A dan B di Indonesia tahun 2020. Deepublish. 2021.
  22. Kang CI, Kim SH, Kim HB, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis. 2003;37(6):745-751. doi: https://doi.org/10.1086/377200.
  23. Tartof SY, Kuntz JL, Chen LH, et al. Development and Assessment of Risk Scores for Carbapenem and Extensive β-Lactam Resistance Among Adult Hospitalized Patients With Pseudomonas aeruginosa Infection. JAMA Netw Open. 2018;1(6):e183927. doi: https://doi.org/10.1001/jamanetworkopen.2018.3927.
  24. Alhussain FA, Yenugadhati N, Al Eidan FA, Al Johani S, Badri M. Risk factors, antimicrobial susceptibility pattern and patient outcomes of Pseudomonas aeruginosa infection: A matched case-control study. J Infect Public Health. 2021;14(1):152-157. doi: https://doi.org/10.1016/j.jiph.2020.11.010.
  25. Salih NS, Yahya WI, Yousif Al-Labban HMY, Aljanaby AAJ. Schiff bases compounds prepared from Phenyl hydrazine as a starting material were Synthesized, Characterized, and their Biological activity was Investigated. Research Journal of Pharmacy and Technology. 2022;15(8):3595-8. doi: https://doi.org/10.52711/0974-360X.2022.00602.
  26. Jeong SJ, Yoon SS, Bae IK, Jeong SH, Kim JM, Lee K. Risk factors for mortality in patients with bloodstream infections caused by carbapenem-resistant Pseudomonas aeruginosa: clinical impact of bacterial virulence and strains on outcome. Diagn Microbiol Infect Dis. 2014;80(2):130-135. doi: 10.1016/j.diagmicrobio.2014.07.003.
  27. Al-Hamamy HR, Salih WH, Al-Mudallal NH. Bacterial Isolates and Antibiotic Susceptibility of Ear Infections in Al-Kindy Teaching Hospital, Baghdad, Iraq. Research Journal of Pharmacy and Technology. 2021; 14(12):6503-6. doi: https://doi.org/10.52711/0974-360X.2021.01124.
  28. Murugan T, Murugan M, Albino Wins J. Rhamnolipid Biosurfactants produced by Pseudomonas sp. MK5 and its efficacy on Pharmaceutical Application. Research J. Pharm. and Tech. 2017; 10(8): 2645-2649. doi: https://doi.org/10.5958/0974-360X.2017.00470.X.
  29. Suárez C, Peña C, Gavaldà L, et al. Influence of carbapenem resistance on mortality and the dynamics of mortality in Pseudomonas aeruginosa bloodstream infection. Int J Infect Dis. 2010;14 Suppl 3:e73-e78. doi: https://doi.org/10.1016/j.ijid.2009.11.019.
  30. Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol. 2009;58(Pt 9):1133-1148. doi: https://doi.org/10.1099/jmm.0.009142-0.
  31. Biswal I, Arora BS, Kasana D, Neetushree. Incidence of multidrug resistant pseudomonas aeruginosa isolated from burn patients and environment of teaching institution. J Clin Diagn Res. 2014;8(5):DC26-DC29. doi: https://doi.org/10.7860/JCDR/2014/7483.438.
  32. Zavascki AP, Barth AL, Gaspareto PB, et al. Risk factors for nosocomial infections due to Pseudomonas aeruginosa producing metallo-beta-lactamase in two tertiary-care teaching hospitals. J Antimicrob Chemother. 2006;58(4):882-885. doi: https://doi.org/10.1093/jac/dkl327.
  33. Kumar ST, Yassin A, Bhowmick T, Dixit D. Recommendations From the 2016 Guidelines for the Management of Adults With Hospital-Acquired or Ventilator-Associated Pneumonia. P T. 2017;42(12):767-772.
  34. Mahon CR, Lechman DC. Nonfermenting and miscellaneous gram-negative bacilli’. Dalam Textbook of diagnostic microbiology 3th Edition. St. Louis, Missouri: Elsevier Health Sciences‘, Edisi 3. Elsevier. 2019:480-83.
  35. Thi MTT, Wibowo D, Rehm BHA. Pseudomonas aeruginosa Biofilms. Int J Mol Sci. 2020 Nov 17;21(22):8671. doi: https://doi.org/10.3390/ijms21228671.
  36. Onguru P, Erbay A, Bodur H, et al. Imipenem-resistant Pseudomonas aeruginosa: risk factors for nosocomial infections. J Korean Med Sci. 2008;23(6):982-987. doi: https://doi.org/10.3346/jkms.2008.23.6.982.
  37. Anggraini D, Yulindra UG, Savira M, Djojosugito FA, Hidayat N. Prevalensi dan pola sensitivitas antimikroba multidrug resistant Pseudomonas aeruginosa di RSUD Arifin Achmad. Majalah kedokteran Bandung. 2018;50(1). doi: https://doi.org/10.15395/mkb.v50n1.1150.
  38. Goli HR, Nahaei MR, Ahangarzadeh Rezaee M, Hasani A, Samadi Kafil H, Aghazadeh M. Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran. Iran J Microbiol. 2016;8(1):62-69.
  39. Farajzadeh Sheikh A, Shahin M, Shokoohizadeh L, Halaji M, Shahcheraghi F, Ghanbari F. Molecular epidemiology of colistin-resistant Pseudomonas aeruginosa producing NDM-1 from hospitalized patients in Iran. Iran J Basic Med Sci. 2019;22(1):38-42. doi: https://doi.org/10.22038/ijbms.2018.29264.7096.

How to Cite

Andritta Febriana, Widodo, A. D., & Muhammad Vitanata Arfijanto. (2023). Prevalence and susceptibility profile of carbapenem-resistant pseudomonas aeruginosa (CRPA) at Dr. Soetomo Public Hospital, Surabaya, from January to December 2021. Bali Medical Journal, 12(1), 571–576. https://doi.org/10.15562/bmj.v12i1.4098

HTML
10

Total
3

Share

Search Panel

Andritta Febriana
Google Scholar
Pubmed
BMJ Journal


Agung Dwi Widodo
Google Scholar
Pubmed
BMJ Journal


Muhammad Vitanata Arfijanto
Google Scholar
Pubmed
BMJ Journal