Skip to main content Skip to main navigation menu Skip to site footer

Research gap and trend in neurological therapy related to nanotechnology based on bibliometric analysis


Link of Video Abstract:


Introduction: The development of nanotechnology science is so fast that there has been a lot of progress in terms of therapeutic research related to diseases in Neurology. To our knowledge, there have been no bibliometric studies in this field, so this study is needed to see research gaps that world researchers can do to accelerate and multiply nanotechnology that can be applied in patient therapy in clinics and collaborate with existing researchers in this field. This research aims to look for gaps in research fields that have not been widely studied in the field of nanotechnology related to neurological diagnosis and therapy and know research trends.

Method: Documents were collected from the Scopus site from 2002 to 2022, totaling 245 documents, which were then analyzed quantitatively with Biblioshiny and Vosviewer software. Furthermore, a qualitative analysis was also carried out.

Results:  Gathered information on document trends, citation counts, authors, producing nations, affiliations, research topics, and research networks. Three developing domains (niches) are three developing domains (niches) that present research opportunities for researchers worldwide. The United States seems to be the industry leader in document production.

Conclusion: The politics of a nation's financing policies heavily influence the advancement of research in the field of nanotechnology connected to the diagnosis and treatment of neurological illnesses. In order to expedite and replicate applications in the therapeutic use of nanotechnology, establishing new international research networks is required. Research gaps might be found through this research.


  1. Zhu C, Wu LQ, Wang X, Lee JH, English DS, Ghodssi R, et al. Reversible vesicle restraint in response to spatiotemporally controlled electrical signals: a bridge between electrical and chemical signaling modes. Langmuir. 2007;23(1):286-91.
  2. Zhang Q, Dai X, Zhang H, Zeng Y, Luo K, Li W. Recent advances in development of nanomedicines for multiple sclerosis diagnosis. Biomed Mater. 2021;16(2):024101.
  3. Ze Y, Sheng L, Zhao X, Ze X, Wang X, Zhou Q, et al. Neurotoxic characteristics of spatial recognition damage of the hippocampus in mice following subchronic peroral exposure to TiO2 nanoparticles. J Hazard Mater. 2014;264:219-29.
  4. Yu X, Wang J, Liu J, Shen S, Cao Z, Pan J, et al. A multimodal Pepstatin A peptide-based nanoagent for the molecular imaging of P-glycoprotein in the brains of epilepsy rats. Biomaterials. 2016;76:173-86.
  5. Yang J, Luly KM, Green JJ. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022:1853.
  6. Xiao G, Song Y, Zhang S, Yang L, Xu S, Zhang Y, et al. A high-sensitive nano-modified biosensor for dynamic monitoring of glutamate and neural spike covariation from rat cortex to hippocampal sub-regions. J Neurosci Methods. 2017;291:122-30.
  7. Varela JA, Dupuis JP, Etchepare L, Espana A, Cognet L, Groc L. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices. Nature Communications. 2016;7(1):10947.
  8. Tüzün E. Chapter 15 - Nanotechnology-Based Management of Neurological Autoimmune Diseases. In: Gürsoy-Özdemir Y, Bozdağ-Pehlivan S, Sekerdag E, editors. Nanotechnology Methods for Neurological Diseases and Brain Tumors: Academic Press; 2017. p. 279-90.
  9. Temel Y, Jahanshahi A. Treating brain disorders with neuromodulation. Science. 2015;347(6229):1418-9.
  10. Siddiqi KS, Husen A, Sohrab SS, Yassin MO. Recent Status of Nanomaterial Fabrication and Their Potential Applications in Neurological Disease Management. Nanoscale Res Lett. 2018;13(1):231.
  11. Sharma HS, Muresanu DF, Sharma A, Patnaik R, Lafuente JV. Nanoparticles influence pathophysiology of spinal cord injury and repair. Prog Brain Res. 2009;180:154-80.
  12. Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online. 2023;22(1):1.
  13. Sepasi T, Ghadiri T, Bani F, Ebrahimi-Kalan A, Khodakarimi S, Zarebkohan A, et al. Nanotechnology-based approaches in diagnosis and treatment of epilepsy. Journal of Nanoparticle Research. 2022;24(10):199.
  14. Patel V, Chavda V, Shah J. Nanotherapeutics in Neuropathologies: Obstacles, Challenges and Recent Advancements in CNS Targeted Drug Delivery Systems. Curr Neuropharmacol. 2021;19(5):693-710.
  15. Park E-J, Kim H, Kim Y, Choi K. Repeated-dose toxicity attributed to aluminum nanoparticles following 28-day oral administration, particularly on gene expression in mouse brain. Toxicological & Environmental Chemistry. 2011;93(1):120-33.
  16. Naqvi S, Panghal A, Flora SJS. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Frontiers in Neuroscience. 2020;14.
  17. Monaco AM, Giugliano M. Carbon-based smart nanomaterials in biomedicine and neuroengineering. Beilstein J Nanotechnol. 2014;5:1849-63.
  18. Mangge H, Almer G, Stelzer I, Reininghaus E, Prassl R. Laboratory medicine for molecular imaging of atherosclerosis. Clin Chim Acta. 2014;437:19-24.
  19. Malek Z. Chemical characterization and therapeutic properties of Achillea biebersteinii leaf aqueous extract synthesized copper nanoparticles against methamphetamine-induced cell death in PC12: A study in the nanotechnology and neurology fields. Applied Organometallic Chemistry. 2020;34.
  20. Ludewig P, Graeser M, Forkert ND, Thieben F, Rández-Garbayo J, Rieckhoff J, et al. Magnetic particle imaging for assessment of cerebral perfusion and ischemia. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(1):1757.
  21. Lopez T, Ortiz-Islas E, Manjarrez J, Reinoso FR, Sepulveda A, Gonzalez RD. Biocompatible titania microtubes formed by nanoparticles and its application in the drug delivery of valproic acid. Optical Materials. 2006;29(1):70-4.
  22. Liu Z, Ren G, Zhang T, Yang Z. The inhibitory effects of nano-Ag on voltage-gated potassium currents of hippocampal CA1 neurons. Environ Toxicol. 2011;26(5):552-8.
  23. Liu P, Huang Z, Gu N. Exposure to silver nanoparticles does not affect cognitive outcome or hippocampal neurogenesis in adult mice. Ecotoxicol Environ Saf. 2013;87:124-30.
  24. Khan AR, Yang X, Fu M, Zhai G. Recent progress of drug nanoformulations targeting to brain. J Control Release. 2018;291:37-64.
  25. Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, et al. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev. 2019;148:252-89.
  26. Kateb B, Chiu K, Black KL, Yamamoto V, Khalsa B, Ljubimova JY, et al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage. 2011;54(1):106-24.
  27. Kanwar JR, Sun X, Punj V, Sriramoju B, Mohan RR, Zhou SF, et al. Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal. Nanomedicine. 2012;8(4):399-414.
  28. Kafa H, Wang JTW, Al-Jamal KT. Current Perspective of Carbon Nanotubes Application in Neurology. International Review of Neurobiology. 2016;130:229-63.
  29. Joseph A, Nance E. Nanotherapeutics and the Brain. Annu Rev Chem Biomol Eng. 2022;13:325-46.
  30. Hueso M, Mallén A, Suñé-Pou M, Aran JM, Suñé-Negre JM, Navarro E. ncRNAs in Therapeutics: Challenges and Limitations in Nucleic Acid-Based Drug Delivery. Int J Mol Sci. 2021;22(21).
  31. Hong N, Nam Y. Thermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitro. Nat Commun. 2020;11(1):6313.
  32. Hersh AM, Alomari S, Tyler BM. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci. 2022;23(8).
  33. Güntner AT, Kompalla JF, Landis H, Theodore SJ, Geidl B, Sievi NA, et al. Guiding Ketogenic Diet with Breath Acetone Sensors. Sensors (Basel). 2018;18(11).
  34. González-Rubio G, Liz-Marzán LM. Peptides used to make light-twisting nanoparticles. Nature. 2018;556(7701):313-4.
  35. Gendelman HE, Mosley RL, Boska MD, McMillan J. The promise of nanoneuromedicine. Nanomedicine. 2014;9(2):171-6.
  36. Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine. 2015;10:4321-40.
  37. Faiz K, Lam FC, Chen J, Kasper EM, Salehi F. The Emerging Applications of Nanotechnology in Neuroimaging: A Comprehensive Review. Front Bioeng Biotechnol. 2022;10:855195.
  38. De Silva M.N. AMV, Goldberg J.L. Developing super-paramagnetic nanoparticles for central nervous system axon regeneration. TechConnect Briefs. 2007:791 - 4.
  39. Das S, Carnicer-Lombarte A, Fawcett JW, Bora U. Bio-inspired nano tools for neuroscience. Prog Neurobiol. 2016;142:1-22.
  40. Da Silva-Candal A, Argibay B, Iglesias-Rey R, Vargas Z, Vieites-Prado A, López-Arias E, et al. Vectorized nanodelivery systems for ischemic stroke: a concept and a need. J Nanobiotechnology. 2017;15(1):30.
  41. Curtis C, Zhang M, Liao R, Wood T, Nance E. Systems-level thinking for nanoparticle-mediated therapeutic delivery to neurological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(2).
  42. Crovador R, Heim H, Cottam S, Feron K, Bhatia V, Louie F, et al. Advanced Control of Drug Delivery for In Vivo Health Applications via Highly Biocompatible Self-Assembled Organic Nanoparticles. ACS Applied Bio Materials. 2021;4(8):6338-50.
  43. Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P. Wireless magnetothermal deep brain stimulation. Science. 2015;347(6229):1477-80.
  44. Çetin M, Aytekin E, Yavuz B, Bozdağ-Pehlivan S. Chapter 7 - Nanoscience in Targeted Brain Drug Delivery. In: Gürsoy-Özdemir Y, Bozdağ-Pehlivan S, Sekerdag E, editors. Nanotechnology Methods for Neurological Diseases and Brain Tumors: Academic Press; 2017:117-47.
  45. Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu LP, Moghimi SM, et al. Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomedicine. 2011;7(5):521-40.
  46. Bencsik A, Lestaevel P, Guseva Canu I. Nano- and neurotoxicology: An emerging discipline. Prog Neurobiol. 2018;160:45-63.
  47. Ahmeda A, Zangeneh M, Dara S, Malek Z, Zangeneh A. Suppressor capacity of iron nanoparticles biosynthesized using Salvia chloroleuca leaf aqueous extract on methadone‐induced cell death in PC12: Formulation a new drug from relationship between the nanobiotechnology and neurology sciences. Applied Organometallic Chemistry. 2020;34:5355.
  48. Zhao C, Tan A, Pastorin G, Ho HK. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnology Advances. 2013;31(5):654-68.
  49. Zhang Y, Zou Z, Liu S, Miao S, Liu H. Nanogels as Novel Nanocarrier Systems for Efficient Delivery of CNS Therapeutics. Frontiers in Bioengineering and Biotechnology. 2022;10.
  50. Zhang J, Venkataramani S, Xu H, Song Y-K, Song H-K, Palmore GTR, et al. Combined topographical and chemical micropatterns for templating neuronal networks. Biomaterials. 2006;27(33):5734-9.
  51. Zare I, Yaraki MT, Speranza G, Najafabadi AH, Shourangiz-Haghighi A, Nik AB, et al. Gold nanostructures: synthesis, properties, and neurological applications. Chemical Society Reviews. 2022;51(7):2601-80.
  52. Yang L, Li Y, Fang Y. Nanodevices for cellular interfaces and electrophysiological recording. Adv Mater. 2013;25(28):3881-7.
  53. Yang C, Park S. Nanomaterials-assisted thermally induced neuromodulation. Biomedical Engineering Letters. 2021;11(3):163-70.
  54. Xie J, Chen L, Aatre KR, Srivatsan M, Varadan VK. Somatosensory neurons grown on functionalized carbon nanotube mats. Smart Materials and Structures. 2006;15(4):N85.
  55. Wu ZR, Ma J, Liu BF, Xu QY, Cui FZ. Layer-by-layer assembly of polyelectrolyte films improving cytocompatibility to neural cells. J Biomed Mater Res A. 2007;81(2):355-62.
  56. Widge AS, Jeffries-El M, Cui X, Lagenaur CF, Matsuoka Y. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. Biosens Bioelectron. 2007;22(8):1723-32.
  57. Wang Z. Bioinspired laser-operated molecular locomotive. Phys Rev E Stat Nonlin Soft Matter Phys. 2004;70(3 Pt 1):031903.
  58. Wang K, Zhu X, Yu E, Desai P, Wang H, Zhang C-l, et al. Therapeutic Nanomaterials for Neurological Diseases and Cancer Therapy. Journal of Nanomaterials. 2020;2020:2047379.
  59. Veloz-Castillo MF, West RM, Cordero-Arreola J, Arias-Carrión O, Méndez-Rojas MA. Nanomaterials for Neurology: State-of-the-Art. CNS Neurol Disord Drug Targets. 2016;15(10):1306-24.
  60. Varadan VK, editor The role of nanotechnology and nano and micro-electronics in monitoring and control of cardiovascular diseases and neurological disorders. Nanosensors, Microsensors, and Biosensors and Systems 2007.
  61. Tiwari S, Sharma V, Mujawar M, Mishra YK, Kaushik A, Ghosal A. Biosensors for Epilepsy Management: State-of-Art and Future Aspects. Sensors (Basel). 2019;19(7).
  62. Soares JC, Pereira T, Costa KM, Maraschin T, Basso NR, Bogo MR. Developmental neurotoxic effects of graphene oxide exposure in zebrafish larvae (Danio rerio). Colloids Surf B Biointerfaces. 2017;157:335-46.
  63. Silva GA. Neuroscience nanotechnology: progress, opportunities and challenges. Nanoscience and Technology: A Collection of Reviews from Nature Journals. 2009;7(1):251-60.
  64. Schrlau MG, Bau HH. Carbon Nanopipettes for Cell Surgery. SLAS Technology. 2010;15(2):145-51.
  65. Scaini D, Ballerini L. Nanomaterials at the neural interface. Curr Opin Neurobiol. 2018;50:50-5.
  66. Qian Y, Zhao X, Han Q, Chen W, Li H, Yuan W. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nature Communications. 2018;9(1):323.
  67. Qian L, Winfree E, Bruck J. Neural network computation with DNA strand displacement cascades. Nature. 2011;475(7356):368-72.
  68. Ovshinsky SR, Pashmakov B. Innovation Providing New Multiple Functions in Phase-Change Materials To Achieve Cognitive Computing. MRS Online Proceedings Library. 2003;803(1):61-72.
  69. Moxon KA, Kalkhoran NM, Markert M, Sambito MA, McKenzie JL, Webster JT. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. IEEE Trans Biomed Eng. 2004;51(6):881-9.
  70. Milleson V. Nanotechnology, the Brain, and the Future: Ethical Considerations. In: Hays SA, Robert JS, Miller CA, Bennett I, editors. Nanotechnology, the Brain, and the Future. Dordrecht: Springer Netherlands; 2013. p. 79-96.
  71. Löffler B. Conference Scene: 2nd Annual European Conference for Clinical Nanomedicine. Nanomedicine. 2009;4(7):705-8.
  72. Liu R, Zhu G, Qing P. Study on the Treatment of Ischemic Stroke Based on Poly(lactic-co-glycolic acid) (PLGA) Nanotechnology. Materials Science Forum. 2021;1027:58-63.
  73. Liu J, He Y, Zhang J, Li J, Yu X, Cao Z, et al. Functionalized nanocarrier combined seizure-specific vector with P-glycoprotein modulation property for antiepileptic drug delivery. Biomaterials. 2016;74:64-76.
  74. Limongi T, Tirinato L, Pagliari F, Giugni A, Allione M, Perozziello G, et al. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering. Nano-Micro Letters. 2016;9(1):1.
  75. Lietz M, Dreesmann L, Hoss M, Oberhoffner S, Schlosshauer B. Neuro tissue engineering of glial nerve guides and the impact of different cell types. Biomaterials. 2006;27(8):1425-36.
  76. Libanori A, Chen J, Tat T. Triboelectric Nanogenerators for Therapeutic Electrical Stimulation. Advanced Materials. 2021;33.
  77. Leiro V, Santos S, Lopes C, Pego AP. Dendrimers as Powerful Building Blocks in Central Nervous System Disease: Headed for Successful Nanomedicine. Advanced Functional Materials. 2018;28.
  78. Komane P, Choonara Y, du Toit L, Kumar P, Kondiah PPD, Modi G, et al. Diagnosis and Treatment of Neurological and Ischemic Disorders Employing Carbon Nanotube Technology. Journal of Nanomaterials. 2016;2016:1-19.
  79. Johansson F, Carlberg P, Danielsen N, Montelius L, Kanje M. Axonal outgrowth on nano-imprinted patterns. Biomaterials. 2006;27(8):1251-8.
  80. Jiang X, Gao H. Neurotoxicity of Nanomaterials and Nanomedicine2016.
  81. Holban AM. Foreword. In: Grumezescu AM, editor. Nanomaterials for Drug Delivery and Therapy: William Andrew Publishing; 2019:23.
  82. He W, McConnell GC, Bellamkonda RV. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J Neural Eng. 2006;3(4):316-26.
  83. Grumezescu AM. Nanomaterials for Drug Delivery and Therapy. In: Grumezescu AM, editor. Nanomaterials for Drug Delivery and Therapy: William Andrew Publishing; 2019:25-28.
  84. Giakoumettis D, Sgouros S. Nanotechnology in neurosurgery: a systematic review. Childs Nerv Syst. 2021;37(4):1045-54.
  85. Gao H, Jiang X. Perspective on Strategies to Reduce the Neurotoxicity of Nanomaterials and Nanomedicines. In: Jiang X, Gao H, editors. Neurotoxicity of Nanomaterials and Nanomedicine: Academic Press; 2017:331-6.
  86. Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the Blood–Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Advanced Materials. 2018;30(46):1801362.
  87. Ellis-Behnke R. Nano Neurology and the Four P's of Central Nervous System Regeneration: Preserve, Permit, Promote, Plasticity. Medical Clinics of North America. 2007;91(5):937-62.
  88. Ehrlich H, Maldonado M, Hanke T, Meissner H, Born R, Scharnweber D, et al. Spongins: Nanostructural investigations and development of biomimetic material model. VDI-Berichte. 2003;1803 (2003):287-90.
  89. dos Santos GM, Prestes PJ, Pranke P. Nanopolymers: Powerful Tools in Neuroprotection and Neuroregeneration. Current Nanoscience. 2022;18(6):668-74.
  90. Dario P, Verschure PFMJ, Prescott T, Cheng G, Sandini G, Cingolani R, et al. Robot Companions for Citizens. Procedia Computer Science. 2011;7:47-51.
  91. Clark G. Polymers, proteins, and prostheses: Advances in neuroscience and nanotechnology. Transactions - 7th World Biomaterials Congress. 2004.
  92. Caneva Soumetz F, Giacomini M, Phillips JB, Brown RA, Ruggiero C. A drug delivery system for the treatment of peripheral nervous system injuries. Conf Proc IEEE Eng Med Biol Soc. 2004;2004:5047-9.
  93. Breguet J-M, Driesen W, Kaegi F, Cimprich T. Applications of Piezo-Actuated Micro-Robots in Micro-Biology and Material Science.2007:57-62.
  94. Bini TB, Shujun G, Ter Chyan T, Shu W, Aymeric L, Lim Ben H, et al. Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotechnology. 2004;15(11):1459.
  95. Batool S, Nabipour H, Ramakrishna S, Mozafari M. Nanotechnology and quantum science enabled advances in neurological medical applications: diagnostics and treatments. Medical & Biological Engineering & Computing. 2022;60(12):3341-56.
  96. Basu R, editor Low Cost Arm and Gripper for Medical Applications. 2019 3rd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech); 2019 29-31 Aug. 2019.
  97. Ai X, Liang R-C, Wang Y-C, Fang F. Stem Cells Combined with Nano Materials–Novel Therapeutics for Central Nervous System Diseases. Journal of Nanoscience and Nanotechnology. 2016;16:8895-908.
  98. Agrawal S, Aguilar C, Ahmad H, Arfin T, Arya A, Barba AA, et al. List of Contributors. In: Grumezescu AM, editor. Nanomaterials for Drug Delivery and Therapy: William Andrew Publishing; 2019;17-21.
  99. Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine. 2017;12:5879-92.
  100. Garza‐Reyes JA. Lean and green – a systematic review of the state of the art literature. Journal of Cleaner Production. 2015;102:18-29.
  101. Wei X, Zhuang L, Li H, He C, Wan H, Hu N, et al. Advances in Multidimensional Cardiac Biosensing Technologies: From Electrophysiology to Mechanical Motion and Contractile Force. Small. 2020;16.
  102. El-Sayed A, Abu-Bakr S, Swelam S, Khaireldin N, Shoueir K, Khalil A. Applying Nanotechnology in the Synthesis of Benzimidazole Derivatives: A Pharmacological Approach. Biointerface Research in Applied Chemistry. 2022;12:992-1005.
  103. Fu T, Liu X, Gao H, Ward JE, Liu X, Yin B, et al. Bioinspired bio-voltage memristors. Nature Communications. 2020;11(1):1861.
  104. Chandler JA, Van der Loos KI, Boehnke SE, Beaudry JS, Buchman DZ, Illes J. Building communication neurotechnology for high stakes communications. Nature Reviews Neuroscience. 2021;22(10):587-8.
  105. Pacheco C, Sousa F, Sarmento B. Chitosan-based nanomedicine for brain delivery: Where are we heading? Reactive and Functional Polymers. 2020;146:104430.
  106. Abbott J, Qin L, Ye T, Jorgolli M, Gertner RS, Park H, et al., editors. CMOS electronics probe inside a cellular network — Invited review paper. 2018 IEEE Custom Integrated Circuits Conference (CICC); 2018.
  107. Guglielmi G. Million-dollar Kavli prize recognizes scientist scooped on CRISPR. Nature. 2018;558(7708):17-8.
  108. Jalili-Firoozinezhad S, Mirakhori F, Baharvand H, editors. Nanotissue Engineering of Neural Cells.2015.
  109. Sarje A, Thakor N. Neural interfacing. Conf Proc IEEE Eng Med Biol Soc. 2004;2004:5325-8.
  110. Abbott A. Neuroscience: Solving the brain. Nature. 2013;499(7458):272-4.
  111. Milton JG. Noise as therapy: A prelude to computationally‐based neurology? Annals of Neurology. 2005;58.
  112. Barh D, Blum K, Madigan M. OMICS: Biomedical Perspectives and Applications.2016.
  113. Wu Y, Chen H-T, Guo L. Opportunities and dilemmas of in vitro nano neural electrodes. RSC Advances. 2019;10:187 - 200.
  114. Zhao Y, Inayat S, Dikin DA, Singer JH, Ruoff RS, Troy JB. Patch clamp technique: Review of the current state of the art and potential contributions from nanoengineering. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems. 2008;222(1):1-11.
  115. Eisenstein M. Super-resolve me: from micro to nano. Nature. 2015;526(7573):459-62.
  116. Verity J. Computing. Technology Review. 2003:58-60.
  117. Torimitsu K. Nano-Bio Science. NTT Technical Review. 2004:12-20.
  118. Mirsky S. The new college try. Scientific American. 2005;292:87-91.
  119. Joseph DM, Grace MH, Kevin MS, Kechen Z, editors. Cognitive swarming: an approach from the theoretical neuroscience of hippocampal function. ProcSPIE; 2019.
  120. Hiroaki K. The single molecule nanometry for the bio-supermolecule research. Journal of the National BInstitute of Information and Communications Technology. 2004.
  121. Camargo RP, Bueno C, Deda D, Leite F. Nanoneurobiophysics. 2017.
  122. Ausman JI. 30th anniversary year of Surgical Neurology. Surg Neurol. 2003;59(1):1-2.
  123. Zhu J, Yang Y, Ma W, Wang Y, Chen L, Xiong H, et al. Antiepilepticus Effects of Tetrahedral Framework Nucleic Acid via Inhibition of Gliosis-Induced Downregulation of Glutamine Synthetase and Increased AMPAR Internalization in the Postsynaptic Membrane. Nano Letters. 2022;22(6):2381-90.
  124. Paul S. Application of Biomedical Engineering in Neuroscience.2019.
  125. Liang XT, Li Q, Xue M, Zhao YM. Application progress of nanomedicines in the treatment of stroke. Chinese Journal of New Drugs. 2017;26:2805-11.
  126. Nulle C, Miller CA, Porter A, Gandhi HS. Applications of Nanotechnology to the Brain and Central Nervous System. In: Hays SA, Robert JS, Miller CA, Bennett I, editors. Nanotechnology, the Brain, and the Future. Dordrecht: Springer Netherlands; 2013:21-41.
  127. Copyright. In: Grumezescu AM, editor. Nanomaterials for Drug Delivery and Therapy: William Andrew Publishing; 2019:4.
  128. Jain K. Current Status and Future Prospects of Nanoneurology. Journal of Nanoneuroscience. 2009;1:56-64.
  129. San-Juan D. Epilepsy research at the Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez in Mexico. Epilepsy Behav. 2021;116:107792.
  130. Front-matter. In: Grumezescu AM, editor. Nanomaterials for Drug Delivery and Therapy: William Andrew Publishing; 2019:1-3.
  131. Hajra A, Bandyopadhyay D, Hajra SK. Future in neuromedicine: Nanotechnology. J Neurosci Rural Pract. 2016;7(4):613-4.
  132. Helmbrecht H, Joseph A, McKenna M, Zhang M, Nance E. Governing Transport Principles for Nanotherapeutic Application in the Brain. Curr Opin Chem Eng. 2020;30(12):112-9.
  133. Lehrman S. He'll Pay for That. Scientific American - SCI AMER. 2005;293:30-1.
  134. Giordano J, Akhouri R, McBride D. Implantable nano-neurotechnological devices: consideration of ethical, legal, and social issues and implications. J Long Term Eff Med Implants. 2009;19(1):83-93.
  135. Baker T. Laser phototherapy: the future of medicine2015. 94670J.
  136. Obukhov K, Kershner I, Komoltsev I, Obukhov Y. Metric Classification of Traumatic Brain Injury Epileptiform Activity from Electroencephalography Data. Journal of Physics: Conference Series. 2018;1096(1):012082.
  137. Bălaşa R. Nanoneurology. Romanian Journal of Neurology. 2015;14:189-204.
  138. Singh R, Geetanjali. Nanoneuromedicines for Neurodegenerative Diseases. Nanoscience & Nanotechnology-Asia. 2019;9(1):58-63.
  139. Ambesh P, Angeli DG. Nanotechnology in neurology: Genesis, current status, and future prospects. Ann Indian Acad Neurol. 2015;18(4):382-6.
  140. Collins K, Orringer D, Patil P. Nanotechnology in Neurosurgery. Journal of Nanotechnology in Engineering and Medicine. 2010;1.
  141. Lyshevski L, editor Neuroscience, neuroachitectronics, nanocomputers and nanotechnology. Proceedings of the 2nd IEEE Conference on Nanotechnology; 2002.
  142. Collins FS. Opportunities for Research and NIH. Science. 2010;327(5961):36-7.
  143. Tonev D, Georgieva R, Vavrek E. Our Clinical Experience in the Treatment of Myasthenia Gravis Acute Exacerbations with a Novel Nanomembrane-Based Therapeutic Plasma Exchange Technology. Journal of Clinical Medicine [Internet]. 2022; 11(14).
  144. Guyer RD. The paradox in medicine today-exciting technology and economic challenges. Spine J. 2008;8(2):279-85.
  145. Martins MO, Barone D, editors. Planned Obsolescence Using Nanotechnology for Protection Against Artificial Intelligence. Computational Neuroscience; 2017 2017.
  146. Alghamdi MA, Fallica AN, Virzì N, Kesharwani P, Pittalà V, Greish K. The Promise of Nanotechnology in Personalized Medicine. J Pers Med. 2022;12(5).
  147. Morrow KJ, Jr., Bawa R, Wei C. Recent advances in basic and clinical nanomedicine. Med Clin North Am. 2007;91(5):805-43.
  148. Graupe D. The role of neuroengineering in neurological research and in neurological practice. Neurol Res. 2004;26(6):611-2.
  149. Ueno S, Ando J, Fujita H, Sugawara T, Jimbo Y, Itaka K, et al. The state of the art of nanobioscience in Japan. IEEE Trans Nanobioscience. 2006;5(1):54-65.
  150. Simpson I. Therapeutic delivery: industry update covering January 2019. Therapeutic Delivery. 2019;10(5):273-80.
  151. Choi D-H, Dudo A, Scheufele D. U.S. News Coverage of Neuroscience Nanotechnology: How U.S. Newspapers Have Covered Neuroscience Nanotechnology During the Last Decade. 2013: 67-78.
  152. Silva GA. What impact will nanotechnology have on neurology? Nature Clinical Practice Neurology. 2007;3(4):180-1.
  153. Lilah I, Moshe David P, Stanislav S, David R, Maroun F, Yael H, editors. Wireless electronic-tattoo for long-term high fidelity facial muscle recordings. ProcSPIE; 2017.
  154. Zhang WR, Pandurangi AK, Peace KE. Yin Yang dynamic neurobiological modeling and diagnostic analysis of major depressive and bipolar disorders. IEEE Trans Biomed Eng. 2007;54(10):1729-39.
  155. Saniotis A. Present and future developments in cognitive enhancement technologies. 27 Journal of Futures Studies. 2009;14.
  156. Roco MC. The new engineering world. Mechanical Engineering. 2005:6-11.
  157. Lynch Z. The future of neurotechnology innovation. Epilepsy Behav. 2009;15(2):120-2.
  158. Findlay SM. This time it's personal. EBR - European Biopharmaceutical Review. 2008:60-2.
  159. Elder JB, Liu CY, Apuzzo ML. Neurosurgery in the realm of 10(-9), Part 2: applications of nanotechnology to neurosurgery--present and future. Neurosurgery. 2008;62(2):269-84; discussion 84-5.
  160. Bosca A, Magrassi R, Firpo G, Repetto L, Boragno C, Valbusa U, editors. Air molding for planar patch clamp on adherent neuronal networks. 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO); 2009.
  161. McNally HA. Atomic Force Microscopy Applications to Neuroscience. MRS Online Proceedings Library (OPL). 2004;820.
  162. Lewis N, editor Bio-electronic interaction: principle and applications. 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS); 2014.
  163. Sato M, Nakajima T, Goto M, Umezawa Y. Cell-Based Indicator to Visualize Picomolar Dynamics of Nitric Oxide Release from Living Cells. Analytical Chemistry. 2006;78(24):8175-82.
  164. Wang YY, Pham TD, Zand K, Li J, Burke PJ. Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel. ACS Nano. 2014;8(5):4228-38.
  165. Widge A, Jeffries-El M, Matsuoka Y. Conductive Polymer "Molecular Wires" Increase Electrical Conductance Across Artificial Cell Membranes. 2004;2.
  166. Li Q, Nan K, Le Floch P, Lin Z, Sheng H, Blum TS, et al. Cyborg Organoids: Implantation of Nanoelectronics via Organogenesis for Tissue-Wide Electrophysiology. Nano Letters. 2019;19(8):5781-9.
  167. Vadim VG, Evgenia Yu S, editors. Detection of proepileptic activity patterns in EEG of WAG/Rij rats. ProcSPIE; 2019.
  168. Lai K, Gaitas A, Xi N, Yang R, Fung C. Development and testing of nano robot end effector for cell electrophysiology and elastography studies. Proceedings of the IEEE Conference on Nanotechnology. 2011:1066-9.
  169. Doğan Güzel F, Çıtak F. Development of an On-Chip Antibiotic Permeability Assay With Single Molecule Detection Capability. IEEE Transactions on NanoBioscience. 2018;1.
  170. Viventi J, Blanco JA. Development of high resolution, multiplexed electrode arrays: Opportunities and challenges. Annu Int Conf IEEE Eng Med Biol Soc. 2012;1394-6.
  171. Dahan M, Lévi S, Luccardini C, Rostaing P, Riveau B, Triller A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science. 2003;302(5644):442-5.
  172. Talukder MI, Siy P, Auner GW, editors. Donut probe promises the best resolution, and the least potential drop than the conventional probes used in biosensors. Proceedings of the 2006 IEEE Sensors Applications Symposium, 2006.
  173. Soumetz FC, Giacomini M, Pastorino L, Phillips J, Brown R, Ruggiero C. Drug delivery for nerve tissue regeneration. 2004; 239-41.
  174. Ong W-Y, Ling E-A. Editorial: Neuronanomedicine - (Part II). Current Medicinal Chemistry. 2014;21(37):4199.
  175. Nazeran H, Chatlapalli S, Krishnam R. Effect of Novel Nanoscale Energy Patches on Spectral and Nonlinear Dynamic Features of Heart Rate Variability Signals in Healthy Individuals during Rest and Exercise. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference. 2005;5:5563-7.
  176. Longaretti M, Chini B, Jerome J, Sacco R. Electrochemical Modeling and Characterization of Voltage Operated Channels in Nano-Bio-Electronics. Sensor Letters. 2008;6:49-56.
  177. Chantler PD, Wylie SR. Elucidation of the separate roles of myosins IIA and IIB during neurite outgrowth, adhesion and retraction. IEE Proc Nanobiotechnol. 2003;150(3):111-25.
  178. Lay-Ekuakille A, Mvemba PK, Trabacca A, Santis RD, Ciccarelli M, Morello R, editors. Extracting Features from Optical Coherence Tomography for Measuring Optical Nerve Thickness. 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA); 2018.
  179. Lim TS, Jain D, Burke PJ, editors. Fabrication of supported lipid bilayer (SLB) and nanotube transistor hybrid biosensing platform using microfluidic channels. 2011 11th IEEE International Conference on Nanotechnology; 2011.
  180. Owen CH, Giffin M, Alley RK, Chang MD, Higashi LK, editors. High Content Screening for Bio-Medical Applications. ASME 2006 Multifunctional Nanocomposites International Conference; 2006.
  181. Shuzo M, Okada K, Arai H, Kanzaki R, Shimoyama I, editors. High Resolution and S/N Ratio Nano Probing System. 19th IEEE International Conference on Micro Electro Mechanical Systems; 2006.
  182. Rahimi Azghadi M, Linares-Barranco B, Abbott D, Leong P. A Hybrid CMOS-Memristor Neuromorphic Synapse. IEEE Transactions on Biomedical Circuits and Systems. 2017;11:434–45.
  183. Romanova EV, Roth MJ, Rubakhin SS, Jakubowski JA, Kelley WP, Kirk MD, et al. Identification and characterization of homologues of vertebrate beta-thymosin in the marine mollusk Aplysia californica. J Mass Spectrom. 2006;41(8):1030-40.
  184. Li T, Lohmann F, Famulok M. Interlocked DNA nanostructures controlled by a reversible logic circuit. Nat Commun. 2014;5:4940.
  185. Hu N, Xu D, Fang J, Li H, Mo J, Zhou M, et al. Intracellular recording of cardiomyocyte action potentials by nanobranched microelectrode array. Biosensors and Bioelectronics. 2020;169:112588.
  186. Vu T, Maddipati R, Blute T, Nehilla B, Nusblat L, Desai T. Ligand-conjugated quantum dots for targeted drug delivery to nerve cells. 2005; 152-3.
  187. Macha I, Ben-Nissan B, Mueller W, Cazalbou S. Marine Nanopharmaceuticals for Drug Delivery and Targeting. 2019; 207-21.
  188. Sigworth FJ, Klemic KG. Microchip technology in ion-channel research. IEEE Trans Nanobioscience. 2005;4(1):121-7.
  189. Shaikh Mohammed J, DeCoster MA, McShane MJ. Micropatterning of Nanoengineered Surfaces to Study Neuronal Cell Attachment in Vitro. Biomacromolecules. 2004;5(5):1745-55.
  190. Insuasty DF, Ceron RE, López DM. A mobile system for the collection of clinical data and EEG signals by using the sana platform. Stud Health Technol Inform. 2014;200:116-23.
  191. Robin P, Kavokine N, Bocquet L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science. 2021;373(6555):687-91.
  192. Osman A, Tetzlaff R, editors. Modelling brain electrical activity by reaction diffusion cellular nonlinear networks (RD-CNN) in laplace domain. 2014 14th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA); 2014.
  193. Yuan H, Lan T, Lin J. Modulation of nano-selenium on tetrodotoxin-sensitive voltage-gated sodium currents in rat dorsal root ganglion neurons. Conf Proc IEEE Eng Med Biol Soc. 2005; 4846-9.
  194. Morie T, Matsuura T, Nagata M, Iwata A. A multinanodot floating-gate MOSFET circuit for spiking neuron models. IEEE Transactions on Nanotechnology. 2003;2(3):158-64.
  195. Torimitsu K. Nano-Bio Developments in Neuroscience. IEEJ Transactions on Electronics, Information and Systems. 2007;127(2):102-5.
  196. Sigrist SJ, Petzoldt AG. Nanocolumns at the heart of the synapse. Nature. 2016;536(7615):151-2.
  197. Pastorino L, Caneva Soumetz F, Ruggiero C. Nanofunctionalisation for the treatment of peripheral nervous system injuries. Conf Proc IEEE Eng Med Biol Soc. 2005;2005:5854-7.
  198. Escárcega-Bobadilla MV, Zelada-Guillén GA, Pyrlin SV, Wegrzyn M, Ramos MMD, Giménez E, et al. Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons. Nature Communications. 2013;4(1):2648.
  199. Berning S, Willig KI, Steffens H, Dibaj P, Hell SW. Nanoscopy in a living mouse brain. Science. 2012;335(6068):551.
  200. Sardoiwala MN, Srivastava AK, Karmakar S, Roy Choudhury S. Nanostructure Endows Neurotherapeutic Potential in Optogenetics: Current Development and Future Prospects. ACS Chemical Neuroscience. 2019;10(8):3375-85.
  201. Vittorio M, Martiradonna L, Assad J. Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing. 2014; 1-285.
  202. Lehmann-Horn F, Jurkat-Rott K. Nanotechnology for neuronal ion channels. J Neurol Neurosurg Psychiatry. 2003;74(11):1466-75.
  203. Kwiat M, Stein D, Patolsky F. Nanotechnology meets electrophysiology. Current Opinion in Biotechnology. 2013;24(4):654-63.
  204. Saha S, Silverberg J, Nagesha D, Sridhar S, O'Malley D, Menon L. Nanowire array technologies for investigation of neural activity. 2007;2:795-8.
  205. Wardill TJ, Gonzalez-Bellido PT, Crook RJ, Hanlon RT. Neural control of tuneable skin iridescence in squid. Proceedings of the Royal Society B: Biological Sciences. 2012;279(1745):4243-52.
  206. Liu Y-Q, Zhan L-B, Bi T-T, Liang L-N, Sun X-X, Sui H. Neural stem cell neural differentiation in 3D extracellular matrix and endoplasmic reticulum stress microenvironment. RSC Advances. 2016;6(41):34959-69.
  207. Naka Y, Kitazawa A, Akaishi Y, Shimizu N. Neurite outgrowths of neurons using neurotrophin-coated nanoscale magnetic beads. J Biosci Bioeng. 2004;98(5):348-52.
  208. Llinás RR, Walton KD, Nakao M, Hunter I, Anquetil PA. Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes. Journal of Nanoparticle Research. 2005;7(2):111-27.
  209. Pae CW, Gretchen K, Douglas JW, editors. Neurotechnology for monitoring and restoring sensory, motor, and autonomic functions. ProcSPIE; 2016.
  210. Arnold R, Wiener T, Thurner T, Hofer E, editors. A Novel Electrophysiological Measurement System to Study Rapidly Paced Animal Hearts. 4th European Conference of the International Federation for Medical and Biological Engineering; Berlin, Heidelberg: Springer Berlin Heidelberg. 2008.
  211. Prokop S, Ábrányi-Balogh P, Barti B, Vámosi M, Zöldi M, Barna L, et al. PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells. Nature Communications. 2021;12(1):6505.
  212. Pisanello M, Pisanello F, Sileo L, Vittorio M. Photonic technologies for optogenetics.2014;1-4.
  213. Johnson RT. Annals of the New York Academy of Sciences :Preface. Annals of the New York Academy of Sciences. 2010;1184(1):7-8.
  214. Kanski J, Hong SJ, Schöneich C. Proteomic analysis of protein nitration in aging skeletal muscle and identification of nitrotyrosine-containing sequences in vivo by nanoelectrospray ionization tandem mass spectrometry. J Biol Chem. 2005;280(25):24261-6.
  215. Heywood WE, Camuzeaux S, Doykov I, Patel N, Preece RL, Footitt E, et al. Proteomic Discovery and Development of a Multiplexed Targeted MRM-LC-MS/MS Assay for Urine Biomarkers of Extracellular Matrix Disruption in Mucopolysaccharidoses I, II, and VI. Anal Chem. 2015;87(24):12238-44.
  216. Mulhall HJ, Abdallat R, Liang X, Fedele S, Lewis MP, Porter S, et al. Rapid detection of oral cancer: Electrophysiological characterization by dielectrophoresis technology. 2010; 35-8.
  217. Hooker SA, editor Reliability of ultra-thin insulation coatings for long-term electrophysiological recordings. ProcSPIE; 2006.
  218. Wang W, Huang X, Zhang Y, Deng G, Liu X, Fan C, et al. Se@SiO(2) nanocomposites suppress microglia-mediated reactive oxygen species during spinal cord injury in rats. RSC Adv. 2018;8(29):16126-38.
  219. Vallejo Jiménez M, Martínez-Puerta J, Agudelo S, Salgado N. SENA Tecnoacademia Risaralda and Caldas as a Collaborative Learning Scenario in Robotics. CRoNe2018: 4th Congress on Robotics and Neuroscience. 2019.
  220. Busoni L, Dupont A, Symonds C, Prost J, Cappello G. Short time investigation of the neurospora kinesin step. Journal of Physics: Condensed Matter. 2006;18(33):S1957.
  221. Page JS, Rubakhin SS, Sweedler JV. Single-neuron analysis using CE combined with MALDI MS and radionuclide detection. Anal Chem. 2002;74(3):497-503.
  222. Lopez Goerne T, Esquivel D, Plascencia N, Ascencio J, Quintana P, González RD. Structural and spectroscopic studies of sol-gel silica-dopamine neurological nanoreservoirs. 2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings. 2007;2:394-7.
  223. Khandelwal P, Beyer CE, Lin Q, Schechter LE, Bach AC. Studying Rat Brain Neurochemistry Using Nanoprobe NMR Spectroscopy: a Metabonomics Approach. Analytical Chemistry. 2004;76(14):4123-7.
  224. Veletić M, Balasingham I. Synaptic Communication Engineering for Future Cognitive Brain–Machine Interfaces. Proceedings of the IEEE. 2019;107(7):1425-41.
  225. Lyshevski SE. Three-dimensional nanobioelectronics: Towards implementation of quantum information theory and quantum computing2005. 218-20:1.
  226. Möhring T, Kellmann M, Jürgens M, Schrader M. Top-down identification of endogenous peptides up to 9 kDa in cerebrospinal fluid and brain tissue by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry. J Mass Spectrom. 2005;40(2):214-26.
  227. Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature. 2015;521(7550):61-4.
  228. Tang A-H, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature. 2016;536(7615):210-4.
  229. Han H, Davis C. Tutorial on chip-based electrophysiology to assess ion channel function - art. no. 67680X. Proceedings of SPIE - The International Society for Optical Engineering. 2007;6768.
  230. Joshi KA, Prouza M, Kum M, Wang J, Tang J, Haddon R, et al. V-Type Nerve Agent Detection Using a Carbon Nanotube-Based Amperometric Enzyme Electrode. Analytical Chemistry. 2006;78(1):331-6.
  231. Yu Z, McKnight TE, Ericson MN, Melechko AV, Simpson ML, Morrison B. Vertically Aligned Carbon Nanofiber Arrays Record Electrophysiological Signals from Hippocampal Slices. Nano Letters. 2007;7(8):2188-95.
  232. Darya VV, Andrey Yu V, Dmitry EP, Alexey RB, editors. When Na modulates Ca: nonlinear interplay between Na/Ca-exchanger and IP3-mediated Ca oscillations in astrocytes. ProcSPIE; 2019.
  233. Torimitsu K. R&D spirits understanding the brain - Exploring the mechanisms behind neural transmission. NTT Technical Review. 2005;3.
  234. Habib A, Zhu X. Massively Multiplexed Single-Cell Electrophysiology With Nanoscale Resolution. MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. 2021.
  235. Davies E. Nanotubes promise improved brain implants. Chemistry Wor. 2004.
  236. Vataman A, editor Alterations of Brain Structure Linked to Myoclonic Epilepsy. 4th International Conference on Nanotechnologies and Biomedical Engineering; Cham: Springer International Publishing. 2020.
  237. Mishra A, Majhi SK. A comprehensive survey of recent developments in neuronal communication and computational neuroscience. Journal of Industrial Information Integration. 2019;13:40-54.
  238. Groppa SA, Ciolac D, Vataman A, Chiosa V, editors. Dense Array Electroencephalography-Based Electric Source Imaging of Interictal Epileptiform Discharges. 4th International Conference on Nanotechnologies and Biomedical Engineering. Cham: Springer International Publishing. 2020.
  239. Fernando S, Atefi SR, editors. Electrical bioimpedance enabling prompt intervention in traumatic brain injury. ProcSPIE; 2017.
  240. Fabbri R, Saracino E, Treossi E, Zamboni R, Palermo V, Benfenati V. Graphene Glial-interfaces: challenges and perspectives. Nanoscale. 2021;13.
  241. Varadan VK, editor Nanotechnology Based Point-of-Care Diagnostics and Therapeutics for Neurological Disorders. ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology; 2010.
  242. Morein-Zamir S, Sahakian BJ. Neuroethics and public engagement training needed for neuroscientists. Trends Cogn Sci. 2010;14(2):49-51.
  243. Chakrabarti S, Swetapadma A, Pattnaik PK, Samajdar T. Pediatric Seizure prediction from EEG signals based on unsupervised learning techniques using various distance measures. 2017; 1-5.
  244. Patel SR, Lieber CM. Precision electronic medicine in the brain. Nat Biotechnol. 2019;37(9):1007-12.
  245. Gonzales DL, Badhiwala KN, Vercosa DG, Avants BW, Liu Z, Zhong W, et al. Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays. Nature Nanotechnology. 2017;12(7):684-91.
  246. Chiosa VA, editor Sleep-Related Epilepsy Diagnosis: Standard Video-EEG or Video-EEG Telemetry? 4th International Conference on Nanotechnologies and Biomedical Engineering. Cham: Springer International Publishing. 2020.
  247. Benabid AL. Spotlight on deep-brain stimulation. Nature. 2015;519(7543):299-300.
  248. Geis G, Gollas F, Tetzlaff R, editors. Towards an automated seizure anticipation device based on cellular neural networks (cnn). 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010); 2010.
  249. Tan SF, Masoumi HRF, Karjiban RA, Stanslas J, Kirby BP, Basri M, et al. Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability. Ultrasonics Sonochemistry. 2016;29:299-308.
  250. Demin S, Panischev O, Yunusov V, Timashev S. The use of Flicker-Noise Spectroscopy in the diagnosis of photosensitive epilepsy based on the analysis of human magnetoencephalograms.2020;1-4.
  251. Alimbuyog R, Cruz J, Pamilar A. Utilization of Multi-Channel and Multi-Dimensional Parametric Signal Recording for Generalized Nocturnal Tonic-Clonic Seizure Detection System for Epileptic Outpatients.2019;1-5.
  252. Yasemin Gürsoy-Özdemir SB-P, Emine Sekerdag. Nanotechnology Methods for Neurological Diseases and Brain Tumors: Drug Delivery across the Blood-Brain Barrier. 2017.
  253. Lich B. GJ, Faber P., Knott G. Advances in automated 3D cortex image dat acquisition. Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, NSTI-Nanotech, Nanotechnology. 2008:472-4.

How to Cite

Saleh, A. Y., & Valentina, R. (2023). Research gap and trend in neurological therapy related to nanotechnology based on bibliometric analysis. Bali Medical Journal, 12(1), 1098–1113.




Search Panel

Arman Yurisaldi Saleh
Google Scholar
BMJ Journal

Riezky Valentina
Google Scholar
BMJ Journal