Skip to main content Skip to main navigation menu Skip to site footer

Placental apoptotic index on COVID-19 and non-COVID-19 cases: a cross sectional study

  • Almira Aulia Shahnaz ,
  • Manggala Pasca Wardhana ,
  • Ernawati ,
  • Grace Ariani ,
  • Budi Utomo ,

Abstract

Backgrounds: Rare cases of COVID-19 vertical transmission are reported, even though abnormal findings on placenta histopathology are frequently reported on SARS-CoV-2 infected pregnancies. However, no publications report the impact of COVID-19 infection on the placental apoptotic index. Apoptosis is a physiological process of cell regeneration. SARS-CoV-2 infection during pregnancy may disturb the respiration system, causing hypoxia, thus altering placental perfusion. COVID-19 infection also increases inflammatory mediators, producing reactive oxygen species and affecting placenta tissue in viremia cases. These processes can cause caspase cleavage, resulting in programmed cell death and apoptosis. This study aims to know whether COVID-19 infection with various degrees of symptoms affects placental apoptosis.

Methods: This is a retrospective, cross sectional study. We conduct a study on 34 placenta blocks of COVID-19 pregnancy and 31 placenta blocks of non-COVID-19 pregnancy. The PCR of nasopharyngeal swabs performed on third-trimester patients in Dr. Soetomo Hospital meets the inclusion and exclusion criteria. Those placenta samples were processed into slides and painted with a TUNEL assay kit. Slides are then examined and rated for apoptotic index.

Results: The majority of these patients are multiparous women. Sixty-five patients were included in the study, 2 died, and 63 others lived. Comparison between COVID-19 positive and non-COVID-19 placental apoptotic index shows a significant difference between both groups (p=0.001).

Conclusion: From this study, we can conclude that there is a significant difference in the apoptotic index of the placenta between COVID-19-positive and negative pregnancies.

References

  1. Villar J, Ariff S, Gunier RB, Thiruvengadam R, Rauch S, Kholin A, Roggero P, Prefumo F, do Vale MS, Cardona-Perez JA, Maiz N, Cetin I, Savasi V, Deruelle P, Easter SR, Sichitiu J, Soto Conti CP, Ernawati E, Mhatre M, Teji JS, Liu B, Capelli C, Oberto M, Salazar L, Gravett MG, Cavoretto PI, Nachinab VB, Galadanci H, Oros D, Ayede AI, Sentilhes L, Bako B, Savorani M, Cena H, García-May PK, Etuk S, Casale R, Abd-Elsalam S, Ikenoue S, Aminu MB, Vecciarelli C, Duro EA, Usman MA, John-Akinola Y, Nieto R, Ferrazi E, Bhutta ZA, Langer A, Kennedy SH, Papageorghiou AT. Maternal and Neonatal Morbidity and Mortality Among Pregnant Women With and Without COVID-19 Infection: The INTERCOVID Multinational Cohort Study. JAMA Pediatr. 2021;175(8):817-826. doi: 10.1001/jamapediatrics.2021.1050.
  2. Febryanna MC, Wardhana MP, Akbar MIA, Nurdianto AR. TNF-a serum Level between SARS-CoV-2 Infected Pregnant women with normal pregnant women in RSUD Dr. Soetomo Surabaya. Bali Med J. 2022;11(1):112-5. doi: 10.15562/bmj.v11i1.3377.
  3. Tjahyadi D. Controversial of SARS-CoV-2 transmission in pregnant mothers: a review. Bali Med J. 2022;11(3):1967-75. doi: 10.15562/bmj.v11i3.3759.
  4. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. doi: 10.1038/s41586-020-2012-7.
  5. Awwaliyah E, Hotimah, Shimabukuro M. Clinical characteristics and mortality associated with COVID-19 in islamic hospital of Jemursari, Surabaya, Indonesia: A hospital-based retrospective cohort study. Bali Med J. 2022;11(3):1202-6. doi: 10.15562/bmj.v11i3.3541.
  6. Kharisma VD, Agatha A, Ansori ANM, Widyananda MH, Rizky WC, Dings TGA, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R. Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res. 2022;10(1):138-146. doi: 10.56499/jppres21.1174_10.1.138.
  7. Ansori ANM, Sucipto TH, Chylichcova S, Padmi H, Kharisma VD, Widyananda MH, Ullah E, Gumenyuk O, Prasedya ES, Sibero MT, Bratishko N, Zainul R. Macroalgae Bioactive Compounds for the Potential Antiviral of SARS-CoV-2: An In Silico Study. Journal of Pure and Applied Microbiology. 2022;16(2):1018-1027. doi: 10.22207/JPAM.16.2.26.
  8. Utami AT, Budiarti RPN. Honey as Miracle Therapy for Covid-19: Literature Study. Bali Med J. 2022;11(3):1207-11. doi: 10.15562/bmj.v11i3.3542.
  9. Listiyani P, Kharisma VD, Ansori AN, Widyananda MH, Probojati RT, Murtadlo AA. In Silico Phytochemical Compounds Screening of Allium sativum Targeting the Mpro of SARS-CoV-2. Pharmacognosy Journal. 2022;14(3):604-609. doi: 10.5530/pj.2022.14.78.
  10. Widyawaruyanti A, Rachmat J, Viandika N, Ilmi H, Tumewu L, Prasetyo B. Effect of Andrographis paniculata tablet (AS201-01) on Transforming Growth Factor Beta (TGF-β) expression and parasite inhibition in mice placenta infected with Plasmodium berghei. Bali Med J. 2018;7(1):210-4. doi: 10.15562/bmj.v7i1.785.
  11. Smith V, Seo D, Warty R, et al. Maternal and neonatal outcomes associated with COVID-19 infection: A systematic review. PLoS One. 2020;15(6):e0234187. doi: 10.1371/journal.pone.0234187.
  12. Cribiù FM, Erra R, Pugni L, et al. (2021). Severe SARS-CoV-2 placenta infection can impact neonatal outcome in the absence of vertical transmission. Journal of Clinical Investigation. 2021;131(6):145526. doi: 10.1172/jci145427.
  13. Sharp AN, Heazell AEP, Crocker IP, Mor G. Placental apoptosis in health and disease. American Journal of Reproductive Immunology. 2010;64(3):159–169. doi: 10.1111/j.1600-0897.2010.00837.x.
  14. Sumorejo P, Listiawan MY, Putri AI, Rantam FA, Susilowati H, Hendrianto E. The role of stem cell metabolites derived from placenta for skin regeneration: An In Vitro Study. Bali Med J. 2019;8(1):354-9. doi: 10.15562/bmj.v8i1.1387.
  15. Shanes ED, Mithal LB, Otero S, Azad HA, Miller ES, Goldstein JA. Placental Pathology in COVID-19. Am J Clin Pathol. 2020;154(1):23-32. doi: 10.1093/ajcp/aqaa089.
  16. Allaire AD, Ballenger KA, Wells SR, McMahon MJ, Lessey BA. Placental Apoptosis in Preeclampsia. Obstet Gynecol. 2000;96(2):271-276. doi: 10.1016/s0029-7844(00)00895-4.
  17. Jing Y, Run-Qian L, Hao-Ran W, Hao-Ran C, Ya-Bin L, Yang G, Fei C. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol Hum Reprod. 2020 Jun 1;26(6):367-373. doi: 10.1093/molehr/gaaa030. PMID: 32365180; PMCID: PMC7239105.
  18. Ansori AN, Kharisma VD, Parikesit AA, Dian FA, Probojati RT, Rebezov M, Scherbakov P, Burkov P, Zhdanova G, Mikhalev A, Antonius Y, Pratama MRF, Sumantri NI, Sucipto TH, Zainul R. Bioactive Compounds from Mangosteen (Garcinia mangostana L.) as an Antiviral Agent via Dual Inhibitor Mechanism against SARS-CoV- 2: An In Silico Approach. Phcog J. 2022;14(1):85-90. doi: 10.5530/pj.2022.14.12.
  19. Smithgall MC, Liu-Jarin X, Hamele-Bena D, Cimic A, Mourad M, Debelenko L, Chen X. Third-trimester placentas of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive women: histomorphology, including viral immunohistochemistry and in-situ hybridization. Histopathology. 2020;77(6):994-999. doi: 10.1111/his.14215.
  20. Ren Y, Shu T, Wu D, Mu J, Wang C, Huang M, Han Y, Zhang XY, Zhou W, Qiu Y, Zhou X. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell Mol Immunol. 2020;17(8):881-883. doi: 10.1038/s41423-020-0485-9.

How to Cite

Shahnaz, A. A., Manggala Pasca Wardhana, Ernawati, Grace Ariani, & Budi Utomo. (2023). Placental apoptotic index on COVID-19 and non-COVID-19 cases: a cross sectional study. Bali Medical Journal, 12(1), 916–920. https://doi.org/10.15562/bmj.v12i1.4200

HTML
21

Total
3

Share

Search Panel