Skip to main content Skip to main navigation menu Skip to site footer

Platelet rich fibrin effect in MMP-9 and TIMP-1 expression as bacterial keratitis therapy

  • Oggy Satriya Putra ,
  • Nandang Sudrajat ,
  • Bimanda Rizki Nurhidayat ,
  • Luki Indriaswati ,
  • Yulia Primitasari ,

Abstract

Bacterial keratitis is an ocular emergency and is one of the leading causes of blindness worldwide. Pseudomonas aeruginosa is the most frequent causative agent of keratitis. The infectious process of P. aeruginosa is highly invasive and can rapidly lead to corneal ulcers, ocular infections (endophthalmitis), and corneal perforation. Delayed or inadequate treatment may result in complications such as corneal fibrosis and neovascularization. Platelet-rich fibrin (PRF), which contains high levels of platelets, can aid in hemostasis, cell migration, and proliferation to accelerate the wound healing process. PRF contains several growth factors, such as Platelet-derived growth factor (PDGF), Vascular endothelial growth factor (VEGF), and Transforming growth factor (TGF- β), which are released in a time-dependent manner during the wound healing process, ranging from 7 to 28 days. TGF- β regulates the expression and activity of matrix metalloproteinases (MMP-1, MMP-2, MMP-3, MMP-9) involved in wound remodeling and healing, where MMPs are regulated or balanced with tissue inhibitors of metalloproteinases (TIMP-1, TIMP-2). In previous studies, PRF was found to be effective in managing bacterial keratitis in cats. In this discussion, we explore the molecular effects of PRF as an adjuvant therapy for bacterial keratitis

References

  1. Cabrera‐Aguas, M., Khoo, P. and Watson, S.L., Infectious keratitis: A review. Clinical & Experimental Ophthalmology, 2022. 50(5), pp.543-562. https://doi.org/ 10.1111/ceo.14113
  2. Eby, A. and Hazlett, L., Pseudomonas keratitis, a review of where we’ve been and what lies ahead. Microb Biochem Technol, 2015. 7, pp.453-457. https://doi.org/ 10.4172/1948-5948.1000254.
  3. Asroruddin, M., Nora, R.L., Edwar, L., Sjamsoe, S. and Susiyanti, M., Various factors affecting the bacterial corneal ulcer healing: a 4-years study in referral tertiary eye hospital in Indonesia. Medical Journal of Indonesia, 2015. 24(3), pp.150-5.
  4. Hsu, H.Y., Ernst, B., Schmidt, E.J., Parihar, R., Horwood, C. and Edelstein, S.L., Laboratory results, epidemiologic features, and outcome analyses of microbial keratitis: a 15-year review from St. Louis. American journal of ophthalmology, 2019. 198, pp.54-62. doi: 10.1016/j.ajo.2018.09.032.
  5. O’Callaghan, R., Caballero, A., Tang, A. and Bierdeman, M., Pseudomonas aeruginosa keratitis: protease IV and PASP as corneal virulence mediators. Microorganisms, 2019. 7(9), p.281. https://doi.org/10.3390/microorganisms7090281.
  6. Prabawati, W.E., Suhendro, G. And Retnowati, E., A First Step To Novel Approach For Treating Alkali Injury Of The Cornea: Effect Of Platelet Rich Fibrin Lysates On Cultured Rabbit (Oryctolagus Cuniculus) Limbal Stem Cell Proliferation Exposed To Sodium Hydroxide. Folia Medica Indonesiana, 2022. 58(2), pp.150-155.
  7. Miron, R.J., Pinto, N.R., Quirynen, M. and Ghanaati, S., Standardization of relative centrifugal forces in studies related to platelet‐rich fibrin. Journal of periodontology, 2019. 90(8), pp.817-820.
  8. Can, M.E., Can, G.D., Cagil, N., Cakmak, H.B. and Sungu, N., Urgent therapeutic grafting of platelet-rich fibrin membrane in descemetocele. Cornea, 2016. 35(9), pp.1245-1249. https://doi.org/ 10.1097/ICO.0000000000000917
  9. Hilliam, Y., Kaye, S. and Winstanley, C., Pseudomonas aeruginosa and microbial keratitis. Journal of medical microbiology, 2020. 69(1), pp.3-13. https://doi.org/ 10.1099/jmm.0.001110.
  10. Ting, D.S.J., Ho, C.S., Deshmukh, R., Said, D.G. and Dua, H.S., Infectious keratitis: an update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance. Eye, 2021. 35(4), pp.1084-1101. https://doi.org/ 10.1038/s41433-020-01339-3
  11. Acharya, M., Farooqui, J.H., Jain, S. and Mathur, U., Pearls and paradigms in Infective Keratitis. Romanian Journal of Ophthalmology, 2019. 63(2), p.119.
  12. Stamate, A.C., Tătaru, C.P. and Zemba, M., Update on surgical management of corneal ulceration and perforation. Romanian journal of ophthalmology, 2019. 63(2), p.166.
  13. Vazirani, J., Wurity, S. and Ali, M.H., Multidrug-resistant Pseudomonas aeruginosa keratitis: risk factors, clinical characteristics, and outcomes. Ophthalmology, 2015. 122(10), pp.2110-2114.
  14. Lakhundi, S., Siddiqui, R. and Khan, N.A., Pathogenesis of microbial keratitis. Microbial pathogenesis, 2017. 104, pp.97-109.
  15. Ljubimov, A. V., & Saghizadeh, M. Progress in corneal wound healing. Progress in Retinal and Eye Research, 2015. 49, 17–45. https://doi.org/10.1016/j.preteyeres.2015.07.002
  16. Uluer, E. T., Vatansever, H. S., & Kurt, F. Ö. Wound Healing and Microenvironment. Wound Healing: Stem Cells Repair and Restorations, Basic and Clinical Aspects, 2018:67–77. https://doi.org/10.1002/9781119282518.ch5
  17. Wilson, S. E. ‘Corneal wound healing’, Experimental Eye Research. Elsevier Ltd, 2020. 197, p. 108089. doi: 10.1016/j.exer.2020.108089.
  18. Chaurasia, S., Lim, R., Lakshminarayanan, R., & Mohan, R. Nanomedicine Approaches for Corneal Diseases. Journal of Functional Biomaterials, 2015. 6(2), 277–298. https://doi.org/10.3390/jfb6020277
  19. Tandon, A., Tovey, J. C. K., Sharma, A., Gupta, R., & Mohan, R. R. Role of Transforming Growth Factor Beta in Corneal Function, Biology and Pathology. Current Molecular Medicine, 2012. 10(6), 565–578. https://doi.org/10.2174/156652410792231286
  20. Chidambaram, J.D., Kannambath, S., Srikanthi, P., Shah, M., Lalitha, P., Elakkiya, S., Bauer, J., Prajna, N.V., Holland, M.J. and Burton, M.J., Persistence of innate immune pathways in late stage human bacterial and fungal keratitis: results from a comparative transcriptome analysis. Frontiers in cellular and infection microbiology, 2017. 7, p.193.
  21. Dua, H. S., Gomes, J. A. P. and Singh, A. ‘Corneal epithelial wound healing’, British Journal of Ophthalmology, 1994. 78(5), pp. 401–408. doi: 10.1136/bjo.78.5.401.
  22. Singh, R.B., Blanco, T., Mittal, S.K., Taketani, Y., Chauhan, S.K., Chen, Y. and Dana, R., Pigment epithelium-derived factor secreted by corneal epithelial cells regulates dendritic cell maturation in dry eye disease. The ocular surface, 2020. 18(3), pp.460-469.
  23. Weisenthal, R. W., Daly, M. K., Freitas, D. de, Feder, R. S., Orlin, S. E., Tu, E. Y., Meter, W. S. Van, & Verdier, D. D. Basic and Clinical Science Course: External Disease and Cornea. In American Academy of Ophthalmology. 2019.
  24. Kamil, S. and Mohan, R.R., Corneal stromal wound healing: Major regulators and therapeutic targets. The ocular surface, 2021. 19, pp.290-306.
  25. Kaya, S. G., Inanc-Surer, S., Cakan-Akdogan, G., Oktay, G., Utine, C. A., & Kalyoncu, S. Roles of matrix metalloproteinases in the cornea: A special focus on macular corneal dystrophy. Medicine in Drug Discovery, 2021. 11(4), 100095. https://doi.org/10.1016/j.medidd.2021.100095
  26. Singh, M., & Tyagi, S. C. Metalloproteinases as mediators of inflammation and the eyes: Molecular genetic underpinnings governing ocular pathophysiology. International Journal of Ophthalmology, 2017. 10(8), 1308–1318. https://doi.org/10.18240/ijo.2017.08.20
  27. Cabral-Pacheco, G. A., Garza-Veloz, I., Rosa, C. C. D. La, Ramirez-Acuña, J. M., Perez-Romero, B. A., Guerrero-Rodriguez, J. F., Martinez-Avila, N., & Martinez-Fierro, M. L. The roles of matrix metalloproteinases and their inhibitors in human diseases. International Journal of Molecular Sciences, 2020. 21(24), 1–53. https://doi.org/10.3390/ijms21249739
  28. Caley, M.P., Martins, V.L. and O'Toole, E.A., Metalloproteinases and wound healing. Advances in wound care, 2015. 4(4), pp.225-234.
  29. Szychowski, K.A., Wójtowicz, A.K. and Gmiński, J., Impact of elastin-derived peptide VGVAPG on matrix metalloprotease-2 and-9 and the tissue inhibitor of metalloproteinase-1,-2,-3 and-4 mRNA expression in mouse cortical glial cells in vitro. Neurotoxicity research, 2019. 35, pp.100-110.
  30. Hoffbrand, A.V., Moss, P.A. and Pettit, J.E., The white cells 1: granulocytes, monocytes and their benign disorders. Hoffbrand’s Essential Hematology. 7th ed. Wiley-Blackwell, 2016. pp.87-101.
  31. Shah, R., Thomas, R. and Mehta, D.S.,. An Update on the Protocols and Biologic Actions of Platelet Rich Fibrin in Dentistry. The European journal of prosthodontics and restorative dentistry, 2017. 25(2), pp.64-72.
  32. Schär, M.O., Diaz-Romero, J., Kohl, S., Zumstein, M.A. and Nesic, D., Platelet-rich concentrates differentially release growth factors and induce cell migration in vitro. Clinical Orthopaedics and Related Research®, 2015. 473, pp.1635-1643.
  33. Hosny, O.H., Abd-Elkareem, M., Ali, M.M. and Ahmed, A.F., Effect of Autologous Serum Derived from Advanced Platelet-rich Fibrin on the Healing of Experimentally-induced Corneal Ulcer in Donkeys (Equus asinus). Journal of Advanced Veterinary Research, 2022. 12(1), pp.73-85.
  34. Hsieh, H.L., Wang, H.H., Wu, W.B., Chu, P.J. and Yang, C.M., Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK-and JNK-NF-κB pathways. Journal of neuroinflammation, 2010. 7, pp.1-17.
  35. Moore, C. S., & Crocker, S. J. An alternate perspective on the roles of TIMPs and MMPs in pathology. American Journal of Pathology, 2012. 180(1), 12–16. https://doi.org/10.1016/j.ajpath.2011.09.008
  36. Komaratih, E., Rindiastuti, Y., Wirohadidjojo, Y. W., Lutfi, D., Nurwasis, Rantam, F. A., Ertanti, N., & Prakoeswa, C. R. S. A comparative study on the therapeutic potential of ocular and non-ocular stem cell secretome on alkaliinduced limbal stem cell niche damage. Biochemical and Cellular Archives, 2019. 19, 4825–4832. https://doi.org/10.35124/bca.2019.19.S2.4825
  37. Razzaqy, Prastyani, R., Primitasari, Y., & Rochmanti, M. Downregulation of the expression of MMP-3 and TIMP-1 by metformin regardless of TNF-α level in an in vitro lens capsule fibrosis model. Biochemical and Cellular Archives, 2019. 19, 4791–4795. https://doi.org/10.35124/bca.2019.19.S2.4791
  38. Airlangga MS, Prastyani R, Nurwasis, Plumeriastuti H, Utomo B. The effectiveness of platelet rich fibrin (PRF) graft to expression of IL-1 and TNF-α in cornea post NaOH exposure: an experimental study. Bali Med J. [Internet]. 2023 Apr. 28 [cited 2023 May 3];12(2):1347-52. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/4389
  39. Kartika RW, Alwi I, Yunir E, Waspadji S, Bardosono S, Immanuel S, Silalahi T, Sungkar S, Rachmat J, Suyatna FD, Reksodiputro MH. A new innovation in topical diabetic foot ulcer; hyaluronic acid platelet-rich fibrin (HAPRF) gel - a study in inflammation and angiogenesis. Bali Med J. [Internet]. 2021 Nov. 4 [cited 2023 May 3];10(3):901-8. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/2317
  40. Mira Sumarta NP, Pramono D C, Hendrianto E, Susilowati H, Karsari D, A.Rantam F. Chondrogenic Differentiation Capacity of Human Umbilical Cord Mesenchymal Stem Cells with Platelet Rich Fibrin Scaffold in Cartilage Regeneration (In Vitro Study). Bali Med J. [Internet]. 2016 Sep. 26 [cited 2023 May 3];5(3):420-6. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/295

How to Cite

Putra, O. S., Sudrajat, N. ., Nurhidayat, B. R. ., Indriaswati, L. ., & Primitasari, Y. . (2023). Platelet rich fibrin effect in MMP-9 and TIMP-1 expression as bacterial keratitis therapy. Bali Medical Journal, 12(2), 1466–1469. https://doi.org/10.15562/bmj.v12i2.4385

HTML
21

Total
12

Share

Search Panel

Oggy Satriya Putra
Google Scholar
Pubmed
BMJ Journal


Nandang Sudrajat
Google Scholar
Pubmed
BMJ Journal


Bimanda Rizki Nurhidayat
Google Scholar
Pubmed
BMJ Journal


Luki Indriaswati
Google Scholar
Pubmed
BMJ Journal


Yulia Primitasari
Google Scholar
Pubmed
BMJ Journal