Skip to main content Skip to main navigation menu Skip to site footer

Bevacizumab and triamcinolone acetonide intravitreal effect on Transforming Growth Factor Beta (TGF-β) and Plasminogen Activator Inhibitor-1 (PAI-1) expression in open globe injury model

  • Kautsar Abiyoga ,
  • Delfitri Lutfi ,
  • Yulia Primitasari ,
  • Citra Dewi Maharani ,
  • Clarisa Finanda ,
  • Wimbo Sasono ,
  • Nurwasis ,
  • Evelyn Komaratih ,
  • Joko Legowo ,

Abstract

Introduction: Triamcinolone acetonide (TA) and bevacizumab have anti-inflammation and anti-proliferation in the wound-healing process caused by ocular injury. There was no medicament to treat ocular injury besides corticosteroids and anti-VEGF, but their comparison is not yet elucidated. This study aimed to compare the effects of injection of intravitreal triamcinolone acetonide and bevacizumab in an expression of TGF-β and PAI-1 in an experimental rabbit model of open-globe injury (OGI). TGF beta and PAI-1 have an important role in the hemostasis of the wound healing process, wherein the eye, the wound healing process should not occur excessively because it can cause PVR (unlike wound healing in the skin or other organs in the body).

Methods: This study was an experimental study of 30 eye rabbits with an OGI model. Six eyes as control and 24 eyes received treatment for 21 days. Thirty Male New Zealand rabbits and we make OGI in the superotemporal quadrant of the right eyes by making a 5 mm circumferential incision, 6 mm behind the limbus. TA and bevacizumab were treated in different groups. The subjects were divided into several groups: A) OGI group (PC), (B) OGI with intravitreal TA group 3 days after (T3), (C) OGI with intravitreal TA group 7 days after (T7), (D) OGI with intravitreal bevacizumab group 3 days after (B3), and (E) OGI with intravitreal bevacizumab group 7 days after (B7). A negative control group (NC) was randomly selected, including five left eyes from the treatment group (n = 6 each). All eyes were examined and evaluated by measuring the expression level of TGF-β and PAI-1. Normality test was done using Shapiro-Wilk, and the expression was compared using One-way ANOVA and Tukey post-hoc test.

Results: The expression of PAI-1 was significantly lower in the treatment group than in the control group (PC) (PC = 10,08 ± 1,23 %, p-value 0,0444). However, the expression of TGF-β was higher in the treatment group compared to the control group (PC) (PC = 6,60 ± 3,30 %, p-value 0,0228).  

Conclusion: Triamcinolone acetonide and bevacizumab treatments after OGI significantly weakened the upregulation of PAI-1 but could not reduce TGF-β expression in the retina and wound site tissue. It reduces the risk of developing posttraumatic complications of proliferative vitreoretinopathy (PVR).

References

  1. Zungu T, Mdala S, Manda C, Twabi HS, Kayange P. Characteristics and visual outcome of ocular trauma patients at Queen Elizabeth Central Hospital in Malawi. PLoS One. 2021;16(3 March):1–11.
  2. Widjaja SA, Hiratsuka Y, Ono K, Yustiarini I, Nurwasis N, Murakami A. Ocular trauma trends in indonesia: Poor initial uncorrected visual acuity associated with mechanism of injury. Open Access Maced J Med Sci. 2021;9:903–8.
  3. Kuhn F, Morris R, Witherspoon CD. BETT: The Terminology of Ocular Trauma. In: Ocular Trauma-Principle and Practicle. New York: Springer US; 2008. p. 3–5.
  4. Coelho J, Ferreira A, Kuhn F, Meireles A. Globe ruptures: outcomes and prognostic analysis of severe ocular trauma. Ophthalmologica. 2022.
  5. Kuhn F, Morris R, Mester V, Witherspoon C. Terminology of (BETT), Mechanical Injuries: the Birmingham Eye Trauma Terminology 3. In: Ocular Traumatology. New York: Springer; 2008.
  6. Choovuthayakorn J, Worakriangkrai V, Patikulsila D, Watanachai N, Kunavisarut P, Chaikitmongkol V, et al. Epidemiology of eye injuries resulting in hospitalization, a referral hospital-based study. Clin Ophthalmol. 2020;14:1–6.
  7. Morescalchi F, Duse S, Gambicorti E, Romano MR, Costagliola C, Semeraro F. Proliferative Vitreoretinopathy after eye injuries: An overexpression of growth factors and cytokines leading to a retinal keloid. Mediators Inflamm. 2013;2013.
  8. Uluer ET, Vatansever HS, Kurt FO. Wound Healing and Microenvironment. In: Turksen K, editor. Wound Healing. Hoboken: Wiley Blackwell; 2018. p. 67–78.
  9. Cardillo JA, Stout JT, LaBree L, Azen SP, Omphroy L, Cui JZ, et al. Post-Traumatic Proliferative Vitreoretinopathy: The Epidemiologic Profile, Onset, Risk Factors, and Visual Outcome. Ophthalmology. 1997;104(7):1166–73.
  10. Kwon OW, Song JH, Roh MI. Retinal detachment and proliferative vitreoretinopathy. Dev Ophthalmol. 2015;55:154–62.
  11. Wiedemann P, Yandiev Y, Hui YN, Wang Y. Pathogenesis of Proliferative Vitreoretinopathy. In: Ryan SJ, editor. Retina. Fifth Edit. Elsevier; 2013. p. 1640–6.
  12. Dai Y, Dai C, Sun T. Inflammatory mediators of proliferative vitreoretinopathy: hypothesis and review. Int Ophthalmol. 2020;40(6):1587–601.
  13. Zhao X, Han H, Song Y, Du M, Liao M, Dong X, et al. The Role of Intravitreal Anti-VEGF Agents in Rabbit Eye Model of Open-Globe Injury. J Ophthalmol. 2021;2021.
  14. Mehdizadeh M, Fattahi F, Eghtedari M, Nowroozzadeh MH, Toosi F. The role of intravitreal bevacizumab in experimental posterior penetrating eye injury. Retina. 2011;31(1):154–60.
  15. Oner A, Kahraman N, Ozdamar S, Balcioglu E. Comparison of the effects of intravitreal bevacizumab and dexamethasone in experimental posterior penetrating eye injury. Int J Ophthalmol. 2018;11(4):575–9.
  16. Andrés-Guerrero V, Perucho-González L, García-Feijoo J, Morales-Fernández L, Saenz-Francés F, Herrero-Vanrell R, et al. Current Perspectives on the Use of Anti-VEGF Drugs as Adjuvant Therapy in Glaucoma. Adv Ther. 2017;34(2):378–95.
  17. Banerjee PJ, Woodcock MG, Bunce C, Scott R, Charteris DG. A pilot study of intraocular use of intensive anti-inflammatory; triamcinolone acetonide to prevent proliferative vitreoretinopathy in eyes undergoing vitreoretinal surgery for open globe trauma; the adjuncts in ocular trauma (AOT) trial: Study protocol f. Trials. 2013;14(1):1.
  18. Nurwasis N, Yuliawati D, Komaratih E, Heriyawati H. The Effect of Subconjunctival Bevacizumab on Angiogenesis in Rabbit Model. Folia Medica Indones. 2021;55(4):290.
  19. Ahn SJ, Hong HK, Na YM, Park SJ, Ahn J, Oh J, et al. Use of rabbit eyes in pharmacokinetic studies of intraocular drugs. J Vis Exp. 2016;2016(113):1–8.
  20. Zhao Y, Singh RP. The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs Context. 2018;7:1–10. https://doi.org/10.7573/dic.212532.
  21. Ghoraba HH, Leila M, Elgouhary SM, Elgemai EEM, Abdelfattah HM, Ghoraba HH, Heikal MA. Safety of high-dose intravitreal triamcinolone acetonide as low-cost alternative to anti-vascular endothelial growth factor agents in lower-middle-income countries. Clin Ophthalmol Auckl NZ. 2018;12:2383–2391. https://doi.org/10.2147/OPTH.S185274.
  22. Banerjee PJ, Xing W, Bunce C, Woodcock M, Chandra A, Scott RAH, and Charteris DG. Triamcinolone during pars plana vitrectomy for open globe trauma: A pilot randomised controlled clinical trial. Br J Ophthalmol. 2016;100: 949–955. https://doi.org/10.1136/bjophthalmol-2015-307347.
  23. Dai Y, Dai C, and Sun T. Inflammatory mediators of proliferative vitreoretinopathy: hypothesis and review. Int Ophthalmol. 2020;40:1587–1601. https://doi.org/10.1007/s10792-020-01325-4.
  24. Shen L, Mao J, Sun S, Dong Y, Chen Y, and Cheng L. Perioperative pharmacological management of choroidal detachment associated with rhegmatogenous retinal detachment. Acta Ophthalmol. (Copenh.). 2016;94: 391–396. https://doi.org/10.1111/aos.12694.
  25. Hykin P, Prevost AT, Vasconcelos JC, Murphy C, Kelly J, Ramu J, Hounsome B, Yang Y, Harding SP, Lotery A, Chakravarthy U, Sivaprasad S. Clinical Effectiveness of Intravitreal Therapy With Ranibizumab vs Aflibercept vs Bevacizumab for Macular Edema Secondary to Central Retinal Vein Occlusion: A Randomized Clinical Trial. JAMA Ophthalmol. 2019;137(11):1256–1264. doi:10.1001/jamaophthalmol.2019.3305.
  26. Schauwvlieghe AM, Dijkman G, Hooymans JM, Verbraak FD, Hoyng CB, Dijkgraaf MG, Peto T, Vingerling JR, Schlingemann RO. Comparing the Effectiveness of Bevacizumab to Ranibizumab in Patients with Exudative Age-Related Macular Degeneration. The BRAMD Study. PLoS One. 2016 May 20;11(5):e0153052. doi: 10.1371/journal.pone.0153052. PMID: 27203434; PMCID: PMC4874598.
  27. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.
  28. Symeonidis C, Papakonstantinou E, Souliou E, Karakiulakis G, Dimitrakos SA, Diza E. Correlation of matrix metalloproteinase levels with the grade of proliferative vitreoretinopathy in the subretinal fluid and vitreous during rhegmatogenous retinal detachment. Acta Ophthalmol. 2011;89(4):339–45.
  29. Okada Y. Immunohistochemistry of MMPs and TIMPs. In: Rowan A., Young DA, editors. Methods in Molecular Biology. Springer; 2009. p. 211–9.
  30. Nowak M, Madej JA, Dziȩgiel P. Intensity of COX2 expression in cells of soft tissue fibrosacrcomas in dogs as related to grade of tumour malignancy. Bull Vet Inst Pulawy. 2007;51(2):275–9.
  31. Kita T, Hata Y, Arita R, et al. Role of TGF-β in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc Natl Acad Sci U S A. 2008;105(45):17504-17509. doi:10.1073/pnas.0804054105
  32. Begum G, O’Neill J, Blachford K, et al. Transforming growth factor beta 2 as a biomarker for detection of disease progression of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 2017;58(8):5979.https://doi.org/10.1080/21691401.2020.1817057
  33. Wu J, Strawn TL, Luo M, Wang L, Li R, Ren M, Xia J, et al. Plasminogen Activator Inhibitor-1 Inhibits Angiogenic Signaling by Uncoupling VEGF Receptor-2-αVβ3 Integrin Cross-talk. Arterioscler. Thromb Vasc Biol. 2015;35:111–120. https://doi.org/10.1161/ATVBAHA.114.304554;58(8):5979.
  34. Pennock S, Haddock LJ, Eliott D, Mukai S, and Kazlauskas A. Is neutralizing vitreal growth factors a viable strategy to prevent proliferative vitreoretinopathy? Prog Retin Eye Res. 2014;40:16–34. https://doi.org/10.1016/j.preteyeres.2013.12.006.
  35. Huang C, Qi, Xia, Chen H, Chao W, Qi, Xiaolin, Wang H, and Gao H. Monolith/Hydrogel composites as triamcinolone acetonide carriers for curing corneal neovascularization in mice by inhibiting the fibrinolytic system. Drug Deliv. 2022;29: 18–30. https://doi.org/10.1080/10717544.2021.2014603.
  36. Queiroz MS. Intravitreal Triamcinolone Acetonide Therapy in Diabetic Macular Edema - Evaluation of the Effects of Metabolic Control, Serum Inflammatory Markers and Endothelial Factors. Diabetes Metab. Disord. 2016;3:1–5. https://doi.org/10.24966/DMD-201X/100008.
  37. Yang TH, Gingery A, Thoreson AR, Larson DR, Zhao C, and Amadio PC. Triamcinolone Acetonide affects TGF-β signaling regulation of fibrosis in idiopathic carpal tunnel syndrome. BMC Musculoskelet. Disord. 2018;19: 342. https://doi.org/10.1186/s12891-018-2260-y.
  38. Hsiao CC, Chang YC, Hsiao YT, Chen PH, Hsieh MC, Wu WC, Kao YH. Triamcinolone acetonide modulates TGF‑β2‑induced angiogenic and tissue‑remodeling effects in cultured human retinal pigment epithelial cells. Mol Med Rep. 2021;24: 802. https://doi.org/10.3892/mmr.2021.12442.
  39. Samarakoon R, Higgins SP, Higgins CE, Higgins PJ. TGF-beta1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60(c-src)/EGFR(Y845) and Rho/ROCK signaling. J Mol Cell Cardiol. 2008 Mar;44(3):527-38. doi: 10.1016/j.yjmcc.2007.12.006. Epub 2008 Jan 3. PMID: 18255094; PMCID: PMC2394714.
  40. Czekay R, Wilkins-Port C, Higins S, et al. PAI-1: an integrator of cell signaing and migration. Int J of Cell Biology. 2011;2011:562481. doi: 10.1155/2011/562481.
  41. Nurwasis, Wiguna SA, Komaratih E, Heryawati. Inhibition of type i collagen expression in fibrosis prevention after trabeculectomy: Oryctolagus cuniculus. Syst Rev Pharm. 2020;11(6):972–8.
  42. Zhao X, Han H, Song Y, Du M, Liao M, Dong X, Wang X, et al. The Role of Intravitreal Anti-VEGF Agents in Rabbit Eye Model of Open-Globe Injury. J Ophthalmol. 2021. https://doi.org/10.1155/2021/5565178.
  43. Muthie FA, Komaratih E, Sutjipto, Fauziah D, Utomo B. Fibrin glue as a novel therapy for contracted socket in comparison to mitomycin-c and triamcinolone acetonide at Dr. Soetomo General Academic Hospital, Surabaya, Indonesia. Bali Med J. [Internet]. 2022 Nov. 7 [cited 2023 Jun. 4];11(3):1485-8. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/3687.
  44. Aswati N, Indriaswati L, Sutjipto, Fauziah D, Utomo B. The effect of fibrin glue on suppressing Transforming Growth Factor-β (TGF-β) expression compared to Mitomycin-C (MMC) and Triamcinolone Acetonide (TCA) as antifibrotic agents in contracted socket prevention . Bali Med J. [Internet]. 2022 Nov. 9 [cited 2023 Jun. 4];11(3):1503-8. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/3709.
  45. Saputro IBW, Primitasari Y, Fatmariyanti S, Fauziah D, Utomo B. Fibrin glue: an anti-fibrotic agent for contracted socket. Bali Med J. [Internet]. 2022 Nov. 9 [cited 2023 Jun. 4];11(3):1498-502. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/3707.

How to Cite

Abiyoga, K., Delfitri Lutfi, Yulia Primitasari, Citra Dewi Maharani, Clarisa Finanda, Wimbo Sasono, Nurwasis, Evelyn Komaratih, & Joko Legowo. (2023). Bevacizumab and triamcinolone acetonide intravitreal effect on Transforming Growth Factor Beta (TGF-β) and Plasminogen Activator Inhibitor-1 (PAI-1) expression in open globe injury model. Bali Medical Journal, 12(2), 1846–1854. https://doi.org/10.15562/bmj.v12i2.4534

HTML
28

Total
21

Share