Skip to main content Skip to main navigation menu Skip to site footer

Administration of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) and Chitosan Scaffold in calvarial bone defects in Wistar rats

  • I Gusti Putu Hendra Sanjaya ,
  • Sri Maliawan ,
  • I Wayan Sudarsa ,
  • Tjokorda Gde Bagus Mahadewa ,


Link of Video Abstract:


Introduction: Autogenous bone grafting is often required in the reconstruction of extensive calvarial bone defects; however, it comes with limitations that may potentially cause patient morbidity. Recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) has been widely developed for clinical use as a potent osteoblast inductors. The study aimed to prove using a chitosan scaffold combination to accelerate craniofacial bone regeneration, measured by increased osteocalcin expression, number of osteoblasts, formation of woven bone, and PDGF expression.

Method: The study used an experimental post-test-only control group design. Twenty-four male Wistar rats with calvarial bone defects were randomized into four treatment groups (control, rhBMP-2, chitosan scaffold, combination of rhBMP-2, and chitosan scaffold) and observed for four weeks. The resulting data was analyzed using an analytical Package for the Social Sciences (SPSS) software to test the hypothesis.

Result: The results showed the administration of chitosan scaffold, rhBMP-2, and a combination of rhBMP-2 and chitosan scaffold significantly increased osteocalcin expression, the number of osteoblasts, woven bone area formation, and PDGF expression compared to the control group (p<0.05). Significantly higher values (p<0.05) in all parameters were shown in the rhBMP-2 and chitosan scaffold combination group compared to those using chitosan scaffold or rhBMP-2 alone.

Conclusion: This study concluded that administering rhBMP-2 and chitosan scaffold combination accelerated the regeneration of calvarial bone defects in Wistar rats.


  1. Oliveira MR, Gorla LF de O, Gabrielli MAC, Pereira-Filho VA. Off-Label Use of Bone Morphogenetic Protein 2 in the Reconstructions of Mandibular Continuity Defects. J Craniofac Surg. 2017;28(1):227-230. doi:
  2. Vural AC, Odabas S, Korkusuz P, et al. Cranial bone regeneration via BMP-2 encoding mesenchymal stem cells. Artif Cells Nanomedicine Biotechnol. 2017;45(3):544-550. doi:
  3. Fernandez de Grado G, Keller L, Idoux-Gillet Y, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018;9:2041731418776819. doi:
  4. Bretschneider H, Quade M, Lode A, et al. Characterization of Naturally Occurring Bioactive Factor Mixtures for Bone Regeneration. Int J Mol Sci. 2020;21(4):1412. doi:
  5. De Witte TM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen Biomater. 2018;5(4):197-211. doi:
  6. Blázquez-Medela AM, Jumabay M, Boström KI. Beyond the bone: Bone morphogenetic protein signaling in adipose tissue. Obes Rev. 2019;20(5):648-658. doi:
  7. Choi JW, Jeong WS, Yang SJ, Park EJ, Oh TS, Koh KS. Appropriate and Effective Dosage of BMP-2 for the Ideal Regeneration of Calvarial Bone Defects in Beagles. Plast Reconstr Surg. 2016;138(1):64e-72e. doi:
  8. Tiffany AS, Dewey MJ, Harley BAC. Sequential sequestrations increase the incorporation and retention of multiple growth factors in mineralized collagen scaffolds. RSC Adv. 2020;10(45):26982-26996. doi:
  9. You R, Lv H, Xiao Y, Yang D, Su Z, Yan C. Water-Soluble Chitosan Enhances Bone Fracture Healing in Rabbit Model. Curr Signal Transduct Ther. 11(1):28-32.
  10. Park Y, Kim KH, Lee J, et al. Immobilization of Bone Morphogenetic Protein-2 on a Nanofibrous Chitosan Membrane for Enhanced Guided Bone Regeneration. Biotechnol Appl Biochem. 2006;43:17-24. doi:
  11. Smith S, Goodge K, Delaney M, Struzyk A, Tansey N, Frey M. A Comprehensive Review of the Covalent Immobilization of Biomolecules onto Electrospun Nanofibers. Nanomaterials. 2020;10(11):2142. doi:
  12. Garot C, Bettega G, Picart C. Additive Manufacturing of Material Scaffolds for Bone Regeneration: Toward Application in the Clinics. Adv Funct Mater. 2021;31(5):2006967. doi:
  13. Xia Y jun, Wang W, Xia H, et al. Preparation of Coralline Hydroxyapatite Implant with Recombinant Human Bone Morphogenetic Protein-2-Loaded Chitosan Nanospheres and Its Osteogenic Efficacy. Orthop Surg. 2020;12(6):1947-1953. doi:
  14. Oliveira ÉR, Nie L, Podstawczyk D, et al. Advances in Growth Factor Delivery for Bone Tissue Engineering. Int J Mol Sci. 2021;22(2):903. doi:
  15. Elsisy M, Elhamshary A, Haroon YM, Sallam S. Effect of chitosan on bone restoration in nasal bone defect: An experimental study. Egypt J Otolaryngol. 2014;30(2):94-101. doi:
  16. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop. 1986;(205):299-308.
  17. Levengood SKL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B. 2014;2(21):3161-3184. doi:
  18. Dimitrov P, Dyulgerova E, R. I, et al. Bone regeneration in critical-size calvarial defect in rats using innovative nano composite material of chitosan/nano-hydroxyapatite composite. Published online April 1, 2016.
  19. Chatzipetros E, Damaskos S, Tosios KI, et al. The effect of nano-hydroxyapatite/chitosan scaffolds on rat calvarial defects for bone regeneration. Int J Implant Dent. 2021;7:40. doi:
  20. Mathews S, Gupta PK, Bhonde R, Totey S. Chitosan enhances mineralization during osteoblast differentiation of human bone marrow-derived mesenchymal stem cells, by upregulating the associated genes. Cell Prolif. 2011;44(6):537-549. doi:
  21. Allegra A, Mania M, D’Ascola A, et al. Altered Long Noncoding RNA Expression Profile in Multiple Myeloma Patients with Bisphosphonate-Induced Osteonecrosis of the Jaw. BioMed Res Int. 2020;2020:e9879876. doi:
  22. Wang X, Matthews BG, Yu J, et al. PDGF Modulates BMP2‐Induced Osteogenesis in Periosteal Progenitor Cells. JBMR Plus. 2019;3(5):e10127. doi:
  23. Skogh AC, Kihlström L, Neovius E, Persson C, Beckman M, Engstrand T. Variation in Calvarial Bone Healing Capacity: A Clinical Study on the Effects of BMP-2-Hydrogel or Bone Autograft Treatments at Different Cranial Locations. J Craniofac Surg. 2013;24:339-343. doi:
  24. MacIsaac ZM, Shakir S, Naran S, et al. Repair of a Complicated Calvarial Defect: Reconstruction of an Infected Wound With rhBMP-2. Ann Plast Surg. 2016;76(2):205-210. doi:
  25. Uribe F, Vásquez B, Alister JP, Olate S. Comparison of rhBMP-2 in Combination with Different Biomaterials for Regeneration in Rat Calvaria Critical-Size Defects. BioMed Res Int. 2022;2022:6281641. doi:
  26. Fu C, Yang X, Tan S, Song L. Enhancing Cell Proliferation and Osteogenic Differentiation of MC3T3-E1 Pre-osteoblasts by BMP-2 Delivery in Graphene Oxide-Incorporated PLGA/HA Biodegradable Microcarriers. Sci Rep. 2017;7(1):12549. doi:
  27. Zhang J, Shang Z, Jiang Y, et al. Biodegradable metals for bone fracture repair in animal models: a systematic review. Regen Biomater. 2021;8(1):rbaa047. doi:

How to Cite

Sanjaya, I. G. P. H. ., Maliawan, S. ., Sudarsa, I. W. ., & Mahadewa, T. G. B. . (2024). Administration of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) and Chitosan Scaffold in calvarial bone defects in Wistar rats. Bali Medical Journal, 13(2), 750–754.




Search Panel

I Gusti Putu Hendra Sanjaya
Google Scholar
BMJ Journal

Sri Maliawan
Google Scholar
BMJ Journal

I Wayan Sudarsa
Google Scholar
BMJ Journal

Tjokorda Gde Bagus Mahadewa
Google Scholar
BMJ Journal