Skip to main content Skip to main navigation menu Skip to site footer

The anti-inflammatory potential of epigallocatechin gallate (EGCG) on tumor necrosis factor alpha and interleukin–10 expression in pseudomonas keratitis model (in vivo study on Rattus norvegicus rats model)

  • Fariztah Sukainah Nur Fathimah ,
  • Ismi Zuhria ,
  • Delfitri Lutfi ,
  • Tarosa Yodia Urolita ,
  • Annisa Karima ,
  • Nila Kurniasari ,
  • Djoko Agus Purwanto ,

Abstract

Background: Pseudomonas aeruginosa infection is the primary cause of keratitis, leading to gradual corneal deterioration and resulting in scarring, thinning, and corneal perforation. Antibiotic treatment alone may prove ineffectual in certain instances, as the inflammatory process may remain despite the elimination of bacteria. Due to its antibacterial, anti-inflammatory, and antioxidant properties, Epigallocatechin gallate (EGCG) has the potential to be used as an adjuvant therapy for Pseudomonas keratitis. The objective of this study is to analyze the expression of TNF-α and IL-10 in a P. aeruginosa-induced keratitis model following the administration of moxifloxacin and EGCG eye drops.

Methods: Rattus norvegicus with keratitis induced by clinical isolate P. aeruginosa were randomly allocated to one of three treatment groups: the negative control group given NaCl 0.93%  and benzalkonium chloride 0.01%; the group given moxifloxacin eye drops; and the group given moxifloxacin eye drops and EGCG 50 μg/mL on the third to fifth day after keratitis induction. Immunohistochemical staining of corneal tissue was utilized to analyze the levels of TNF-α and IL-10 expression.

Results: On the fifth day of subsequent keratitis induction, a statistically significant difference in TNF-α expression was observed across the groups (p=0.015). It was found between the moxifloxacin and EGCG 50 g/mL groups and the negative control group (p=0.008). IL-10 expression showed no significant difference across the groups (p=0.108).

Conclusion: TNF-α expression was significantly different among the three groups, whereas IL-10 expression was not significantly different.

References

  1. Weisenthal RW, Daly MK, de Freitas D, Feder RS, Orlin SE, Tu EY, et al. External disease and cornea: American Academy of Ophthalmology; 2020.
  2. Hazlett LD, McClellan S, Somayajulu M, Bessert D. Targeting Inflammation Driven by HMGB1 in Bacterial Keratitis-A Review. Pathogens. 2021;10(10).
  3. Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence. 2021;12(1):1469-507.
  4. Singh P, Gupta A, Tripathy K. Keratitis. StatPearls. Treasure Island: StatPearls Publishing; 2022.
  5. Asroruddin M, Nora RL, Edwar L, Sjamsoe S, Susiyanti M. Various factors affecting the bacterial corneal ulcer healing: a 4-years study in referral tertiary eye hospital in Indonesia. Medical Journal of Indonesia. 2015;24(3):150-5.
  6. Vazirani J, Wurity S, Ali MH. Multidrug-Resistant Pseudomonas aeruginosa Keratitis: Risk Factors, Clinical Characteristics, and Outcomes. Ophthalmology. 2015;122(10):2110-4.
  7. Triyono J, Eddyanto, Debora K. Pola Bakteri dan Faktor Predisposisi Penderita Ulkus Kornea di RSUD Dr. Soetomo dan RS Mata Undaan Surabaya. Jurnal Oftalmologi Indonesia 2016.
  8. Hsu HY, Ernst B, Schmidt EJ, Parihar R, Horwood C, Edelstein SL. Laboratory Results, Epidemiologic Features, and Outcome Analyses of Microbial Keratitis: A 15-Year Review From St. Louis. Am J Ophthalmol. 2019;198:54-62.
  9. Austin A, Lietman T, Rose-Nussbaumer J. Update on the Management of Infectious Keratitis. Ophthalmology. 2017;124(11):1678-89.
  10. Feoktistova M, Leverkus M. Programmed necrosis and necroptosis signalling. Federation of European Biochemical Societies Journal 2015;282(1):19-31.
  11. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.
  12. Hadrian K, Willenborg S, Bock F, Cursiefen C, Eming SA, Hos D. Macrophage-Mediated Tissue Vascularization: Similarities and Differences Between Cornea and Skin. Frontiers in Immunology. 2021;12.
  13. Hu Y, Gu J, Lin J, Wang Y, Yang F, Yin J, et al. (-)-Epigallocatechin-3-gallate (EGCG) modulates polarized macrophages to suppress M1 phenotype and promote M2 polarization in vitro and in vivo. J Funct Foods. 2021;87:104743.
  14. Radji M, Agustama RA, Elya B, Tjampakasari CR. Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa. Asian Pac J Trop Biomed. 2013;3(8):663-7; discussion 6.
  15. Jeon J, Kim JH, Lee CK, Oh CH, Song HJ. The Antimicrobial Activity of (-)-Epigallocatehin-3-Gallate and Green Tea Extracts against Pseudomonas aeruginosa and Escherichia coli Isolated from Skin Wounds. Ann Dermatol. 2014;26(5):564-9.
  16. Yin H, Deng Y, Wang H, Liu W, Zhuang X, Chu W. Tea polyphenols as an antivirulence compound Disrupt Quorum-Sensing Regulated Pathogenicity of Pseudomonas aeruginosa. Sci Rep. 2015;5:16158.
  17. Lee S, Razqan GS, Kwon DH. Antibacterial activity of epigallocatechin-3-gallate (EGCG) and its synergism with β-lactam antibiotics sensitizing carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii. Phytomedicine. 2017;24:49-55.
  18. Huang HY, Wang MC, Chen ZY, Chiu WY, Chen KH, Lin IC, et al. Gelatin-epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. Int J Nanomedicine. 2018;13:7251-73.
  19. Machin A, Purwanto DA, Sugianto P, Subadi I, Susilo I, Ardianto C, et al. Camellia sinensis with its active compound EGCG can decrease necroptosis via inhibition of HO-1 expression. EurAsian Journal of BioSciences. 2020;14(1):1813-20.
  20. Hao S, Yang D, Zhao L, Shi F, Ye G, Fu H, et al. EGCG-Mediated Potential Inhibition of Biofilm Development and Quorum Sensing in Pseudomonas aeruginosa. Int J Mol Sci. 2021;22(9).
  21. Singh RB, Das S, Chodosh J, Sharma N, Zegans ME, Kowalski RP, et al. Paradox of complex diversity: Challenges in the diagnosis and management of bacterial keratitis. Prog Retin Eye Res. 2022;88:101028.
  22. Thakur A, Xue M, Stapleton F, Lloyd AR, Wakefield D, Willcox MD. Balance of pro- and anti-inflammatory cytokines correlates with outcome of acute experimental Pseudomonas aeruginosa keratitis. Infect Immun. 2002;70(4):2187-97.
  23. Kernacki KA, Barrett RP, McClellan SA, Hazlett LD. Aging and PMN response to P. aeruginosa infection. Invest Ophthalmol Vis Sci. 2000;41(10):3019-25.
  24. Kernacki KA, Goebel DJ, Poosch MS, Hazlett LD. Early cytokine and chemokine gene expression during Pseudomonas aeruginosa corneal infection in mice. Infect Immun. 1998;66(1):376-9.
  25. Ruban VV, Archana PT, Sundararajan M, Geraldine P, Thomas PA. Inflammation and oxidative stress in corneal tissue in experimental keratitis due to Fusarium solani: Amelioration following topical therapy with voriconazole and epigallocatechin gallate. Mycoses. 2018;61(3):159-71.
  26. Hos D, Bucher F, Regenfuss B, Dreisow ML, Bock F, Heindl LM, et al. IL-10 Indirectly Regulates Corneal Lymphangiogenesis and Resolution of Inflammation via Macrophages. Am J Pathol. 2016;186(1):159-71.
  27. Liu W, Dong M, Bo L, Li C, Liu Q, Li Y, et al. Epigallocatechin-3-gallate ameliorates seawater aspiration-induced acute lung injury via regulating inflammatory cytokines and inhibiting JAK/STAT1 pathway in rats. Mediators Inflamm. 2014;2014.
  28. Azambuja JH, Mancuso RI, Via FID, Torello CO, Saad STO. Protective effect of green tea and epigallocatechin-3-gallate in a LPS-induced systemic inflammation model. J Nutr Biochem. 2022;101:108920.
  29. Chen X, Lu D, Liu W, Xie J, Lu Z, Yang H, et al. Therapeutic effect of Atractylenolide I on Aspergillus fumigatus keratitis by affecting MyD88/ NF-κB pathway and IL-1β, IL-10 expression. Cytokine. 2023;162:156112.
  30. Aulia AP, Maat S, Aryati. A powerful elisa technique to test the potential of extra virgin olive oil in reducing tnf-α level and edema volume in male rattus norvegicus exposed to carrageenan. IJMLST. 2020;2(1):1–10. doi: 10.33086/ijmlst.v2i1.1400.

How to Cite

Fathimah, F. S. N. ., Zuhria, I. ., Lutfi, D. ., Urolita, T. Y. ., Karima, A. ., Kurniasari, N. ., & Purwanto, D. A. . (2024). The anti-inflammatory potential of epigallocatechin gallate (EGCG) on tumor necrosis factor alpha and interleukin–10 expression in pseudomonas keratitis model (in vivo study on Rattus norvegicus rats model). Bali Medical Journal, 13(2), 551–557. https://doi.org/10.15562/bmj.v13i2.5251

HTML
0

Total
4

Share

Search Panel

Fariztah Sukainah Nur Fathimah
Google Scholar
Pubmed
BMJ Journal


Ismi Zuhria
Google Scholar
Pubmed
BMJ Journal


Delfitri Lutfi
Google Scholar
Pubmed
BMJ Journal


Tarosa Yodia Urolita
Google Scholar
Pubmed
BMJ Journal


Annisa Karima
Google Scholar
Pubmed
BMJ Journal


Nila Kurniasari
Google Scholar
Pubmed
BMJ Journal


Djoko Agus Purwanto
Google Scholar
Pubmed
BMJ Journal