Antioxidants and immunomodulatory effect of black cumin seed oil in at-risk metabolic syndrome

Akrom Akrom1,2*, Endang Darmawan1, Nuril Maulida3, Syuhada2

ABSTRACT

Introduction: Black Cumin Seed Oil (BCSO) is a traditional medicine widely used as an antioxidant and immunomodulator. Objective: The purpose of this study is to investigate the effect of dose variation of BCSO (1.5 ml/day versus 3 ml/day) on IL-10 activity and MDA levels in patients at risk of MS at Jetis 1 Public Health Center (J1PHC), Bantul Regency, Yogyakarta, Indonesia.

Methods: We conducted an analytical cross-sectional study. 66 patients at risk of metabolic syndrome (MS) were divided into two groups. In stage 1, group 1 received a 1.5 ml/day dose, and group 2 received 3 ml/day for 20 days. The clinical parameters of MS, IL-10 activity, and MDA levels were measured at the end of the study stages.

Results: The mean activity of IL-10 in the 1.5 ml/day dose group was 4.83 and in the 3 ml/day dose group was 5.49, which showed an increase of around 13.66% (p = 0.300). The mean MDA level in the 1.5 ml/day group was 3.92 μmol/L, which increased to 4.31 μmol/L in the 3 ml/day group or approximately 9.95% (p = 0.802). Statistically, IL-10 activity and MDA levels in the two-dose groups did not differ significantly.

Conclusion: The results of this study indicate that the administration of BCSO at doses of 1.5 ml/day and 3 ml/day for 20 days has the same effect on IL-10 activity and MDA levels in patients at risk of MS.

Keywords: Antioxidant, Black Cumin Seed Oil, Immunomodulator.

INTRODUCTION

Metabolic syndromes (MS) are the risk factor of many degenerative diseases and aggravating factors in the era of the covid pandemic. The imbalance of metabolic processes can lead to various clinical problems, including central obesity, hypertension, dyslipidemia, insulin sensitivity disorders, and diabetes. A set of irregular metabolic process symptoms is known as metabolic syndrome (MS). Several factors can affect MS, including the active radicals caused by oxidative stress. Active radicals can cause cell death because they damage cellular fat and protein and lead to various diseases such as autoimmune. Some major immuno-regulators play an essential role in maintaining balance and suppressing autoimmune occurrence, e.g., interleukin-10 cytokine (IL-10). IL-10 has a role in the inflammatory response as an anti-inflammatory cytokine. Meanwhile, radical oxidative biomarkers have been extensively evaluated to identify the relationship between oxidative damage to macromolecules (lipids, deoxyribonucleic acid [DNA], and proteins) and disease progression.

Malondialdehyde (MDA), as a fatty peroxidation biomarker, has increased in patients with inflammation caused by rheumatoid arthritis and MS patients. Administration BCSO for eight weeks in arthritis patients increased IL-10 cytokine and decreased MDA. The BCSO was adequate for use as adjunctive therapy in managing diabetic medicine by lowering serum creatinine and urea levels and blood sugar and HbA1c levels. Meanwhile, the administration of BCSO with a dose of 5 ml/day in healthy patients for eight weeks proved to reduce blood pressure without side effects. Until now, there has been no clear evidence of BCSO effects on IL-10 and MDA as a therapeutic supplement in patients at risk of MS. BCSO is one of the natural ingredients drugs widely used in various countries, including Indonesia, so research needs to be done to find evidence. The study aimed to determine the effect of BCSO on malondialdehyde levels (oxidative stress parameter) and IL-10 expression (anti-inflammatory parameter).

METHODS

Research design and subjects
We conducted an analytical cross-sectional study. We examined biological materials and analyzed data from baseline data from open-label clinical trials of providing additional therapy for preparations containing black cumin seed oil in patients at risk for metabolic syndrome (MS) at the Jetis 1 Community Health Center (J1PHC). The study complied with the Helsinki Declaration in involving humans as the subjects. The protocols and informed consent of the study have been reviewed and approved by the research ethics committee of the Faculty of Medicine and Health Sciences of Muhammadiyah University of Yogyakarta (UMY) in 2016 with the number of certificates of ethical research eligibility:

*Corresponding author: Akrom Akrom; Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia; akrom@pharm.uad.ac.id
A total of 66 patients at Jetis 1 PHC, Bantul District, Yogyakarta Province, at risk of MS who had met the study requirements, expressed their willingness to be the subject of the study, and filled informed consent, were divided into two groups (groups 1 and 2) of 33 subjects each. We signed the issue by simple manual randomization technique.

The inclusion criteria are patients at risk of MS who demonstrated one or more of the following MS-related clinical problems (1) increased fasting glucose (fasting glucose ≥100 mg/dL), (2) increased blood pressure (blood pressure ≥130/85 mmHg), (3) elevated blood triglyceride levels (≥150 mg/dL in males and <150 mg/dL in females). The exclusion criteria in this study are (1) dropping outs during the study, (2) pregnant women, (3) patients taking corticosteroids, undergoing anti-tuberculosis therapy, clinically diagnosed with cancer, severe kidney disease, and consuming immunomodulatory agents, and (4) allergic to BCSO.

In groups 1 and 2, each subject received BCSO capsules at a dose of 1.5 ml/day and 3 ml/day in the first 20 days, followed by a wash-out period for seven days. Subsequently, the doses were exchanged (group 1 with 3 ml/day and group 2 with 1.5 ml/day) on the second 20 days. Blood sampling for the IL-10 activity and MDA level tests was performed on the day after the intervention.

Blood Sampling

The peripheral blood was taken from the cubital vein by a trained analyst. Blood sampling was done three times: day 0 (before treatment), day 21, and day 49 (after treatment). Blood collected on day 0 was used to examine essential clinical characteristics (baseline). The blood was centrifuged at 1,500 g for approximately 15 minutes with a relative centrifuge force (RCF) of about 1,500 g so that the serum sample was obtained for analysis. Unused serum samples were stored at temperatures less than 60°C until analysis was performed. All the samples obtained were secretly coded only known by the researcher to be blind to reduce the bias of the research results. Blood samples were divided into parts 1 for blood chemistry (glucose, LDL cholesterol, HDL, and triglyceride levels), part 2 for MDA level examination, and section 3 for IL-10 expression examination.

Statistical analysis

Data on IL-10 activity measurements and MDA levels were analyzed by paired-sample t-test with SPSS software. A p-value less than 0.05 is considered significant. Statistical test results are presented with mean values in tables or graphs as research data.
dose group, or an increase of 13.66%. Statistically, this increase in activity did not differ significantly (p = 0.300).

MDA level data

Results of MDA examination after the intervention in subjects with doses 1.5ml/day and 3ml/day can be seen in Table 3. The results of statistical analysis on MDA levels are shown in Table 3.

DISCUSSION

Effects of BCSO dose variation on IL-10 activity

Mild inflammation is induced by immune system disruption in MS settings, where pro- and anti-inflammatory conditions are imbalanced, with increased activity of pro-inflammatory cytokines (IL-6, IL-18, and TNF-) and decreased activity of anti-inflammatory cytokines (IL-10). Increased pro-inflammatory cytokines are linked to several pathologic conditions associated with MS, including insulin resistance, diabetes, impaired cardiovascular function, and impaired lipid metabolism. IL-10, as an anti-inflammatory cytokine by inhibiting macrophages and dendritic cells that play a role in controlling nonspecific immune and cellular immune reactions, maybe one of the pathways inhibiting the development of MS disease and its complications by inhibiting the formation of pro-inflammatory cytokines.

Many studies and literature mention the benefits of BCSO supplementation in MS-related conditions, especially in controlling blood glucose levels. The ability of BCSO as a complement to hyperglycemia therapy may affect the pro-inflammatory and anti-inflammatory status, including IL-10. However, dosing of 1.5 ml/day and 3 ml/day did not significantly affect the increase in IL-10 in MS patients. The supplementation of BCS powder with doses of 2 g / day and 3 g / day for three months as adjunctive therapy...
between the use of BCSO at doses of 1.5 ml/day and 3 ml/day of IL-10 activity in patients at risk of MS.

Effects of BCSO dose variation on MDA levels

MDA comprises double-bond carbons of polyunsaturated fatty acids and is easily oxidized but can produce lipid radicals, especially lipid hyper-peroxides, triggering a chain-oxidative reaction. The adverse effect of increased MDA level includes cell membrane damage due to altered structural integrity of the membrane, inactivation of membrane enzyme bonds, inactivation of surface receptor molecules leading to cell functional regulatory errors, and oxidized LDL involvement foam cell formation leading to atherosclerosis. Previous research shows that the effect of BCSO on the response of oxidative stress substances to rheumatoid arthritis patients showed decreased MDA levels. It may be that the optimal ability of the anti-inflammatory effect has been achieved at a dose of 1.5 ml/day so that the increased amount of BCSO has not significantly affected the activity of IL-10. The thymoquinone content in BCSO has an essential role in the immune system by inhibiting the synthesis of pro-inflammatory cytokines, MCP-1, TNF-α, IL-1β, and COX-2, but with a lower inhibitory effect on COX-1 expression and PGE2 production. In addition, the thymoquinone may also increase the expression of p21 WAF1, inhibit histone deacetylase activity, and induce histone hyperacetylation. The anti-inflammatory capabilities in BCSO are expected to inhibit pro-inflammatory pathways through a combination of anti-inflammatory action and proapoptosis that can be applied to the management of inflammatory therapies in cancer. This will affect the pro-and anti-inflammatory balance in MS patients by shifting the increase of anti-inflammatory cytokines, including IL-10. Based on the study results, there was no significant difference between the use of BCSO at doses of 1.5 ml/day and 3 ml/day of IL-10 activity in patients at risk of MS.

CONCLUSION

Provision of BCSO at doses of 1.5 ml/day and 3 ml/day for 20 days had the same effect on IL-10 activity and MDA levels in patients at risk of MS (p > 0.05). A 1.5 ml/day dose has the same benefit as a 3 ml/day dose on the anti-inflammatory cytokine activity (IL-10) and the radical oxidant (MDA) level. Future studies related to BCSO dose effects in patients at risk for MS with more diverse time and doses are needed to obtain more decisive conclusions.

CONFLICT OF INTEREST

There is no potential conflict of interest in this research.

FUNDING

The research received funding from the Ministry of Research Cultural Education and Technology of the Republic of Indonesia through the College Leading Applied Research scheme grant (number003/SK.PJT/LPPM/VII/2021).

ETHICS APPROVAL

The research ethics committee approved this study of the Faculty of Medicine.
ORIGINAL ARTICLE

AUTHOR CONTRIBUTION

AA and ED prepared the research design, data collection, processing and analysis, and drafting. NM and S were involved in data collection and processing, as well as drafting articles. All authors reviewed draft articles.

ACKNOWLEDGMENT

The researchers show their most tremendous gratitude to all patients who have participated as test subjects and the directors and staff of Jetis 1 Public Health Center who have granted permission and provided a place and research facilities. The research team also acknowledges the Ministry of education, culture, research, and technology for providing financial support through the College Leading Applied Research scheme grant number 003/SK.PJT/LPPM/VII/2021.

REFERENCES

15. Fajar DR, Akrom, Darmawan E. The influence of black cumin seed oil therapy with dosage of 1.5 mL/day and 3 mL/day to interleukin-21 (IL-21) expression of the patients with metabolic syndrome risk. In: IOP Conference Series: Materials Science and Engineering. 2017.

